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Abstract

Genome-wide gene expression profiling has been extensively used to generate biological hypotheses based on differential
expression. Recently, many studies have used microarrays to measure gene expression levels across genetic mapping
populations. These gene expression phenotypes have been used for genome-wide association analyses, an analysis referred
to as expression QTL (eQTL) mapping. Here, eQTL analysis was performed in adipose tissue from 28 inbred strains of mice.
We focused our analysis on ‘‘trans-eQTL bands’’, defined as instances in which the expression patterns of many genes were
all associated to a common genetic locus. Genes comprising trans-eQTL bands were screened for enrichments in functional
gene sets representing known biological pathways, and genes located at associated trans-eQTL band loci were considered
candidate transcriptional modulators. We demonstrate that these patterns were enriched for previously characterized
relationships between known upstream transcriptional regulators and their downstream target genes. Moreover, we used
this strategy to identify both novel regulators and novel members of known pathways. Finally, based on a putative
regulatory relationship identified in our analysis, we identified and validated a previously uncharacterized role for cyclin H in
the regulation of oxidative phosphorylation. We believe that the specific molecular hypotheses generated in this study will
reveal many additional pathway members and regulators, and that the analysis approaches described herein will be broadly
applicable to other eQTL data sets.
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Introduction

Traditional studies for mapping quantitative trait loci (QTL)

have focused on identifying the causative genomic loci for

individual disease-related phenotypes, such as body weight and

glucose levels. Recently, microarray technologies have enabled the

measurement of gene expression levels for thousands of genes in

parallel, and these traits have also been used as phenotypes in

genetic association studies. These expression QTL (‘‘eQTL’’)

experiments have been conducted in a wide variety of organisms

and cell types, including yeast, mouse (hematopoietic stem cells,

brain and liver), rat (kidney and adipose), and human (lympho-

blastoid cell lines) (for example, [1–8]). All eQTL studies to date

have resulted in the identification of ‘‘cis-eQTLs’’ in which a

strong association exists between the expression of a specific gene

and the genotype at that gene’s locus. Many previous studies have

focused on characterizing these cis-eQTLs or using these data to

prioritize candidate genes identified in clinical QTL screens.

In contrast to cis-eQTLs, associations between a gene’s

expression and a non-local genomic locus are referred to as

trans-eQTLs. Several other groups have used trans-eQTLs to

study the relationships between up-stream regulators and both

transcriptional targets and phenotypic readouts [9–11]. These

individual trans-eQTLs also organize into ‘‘trans-eQTL bands’’,

wherein the expression of multiple genes is associated with a single,

common genetic locus. Trans-eQTL bands are commonly

hypothesized to result from the differential expression of multiple

downstream genes (‘‘trans-band targets’’) due to the presence of

allelic variants in an upstream regulatory gene (‘‘trans-band

regulator’’) found at the associated genetic locus. The functional

role of trans-eQTL bands have been previously studied in yeast, in

which AMN1 was shown to affect growth characteristics mediated

by the transcriptional effect on several down-stream target genes

[7]. Functional relationship between trans-eQTL band and

biological pathways was also studied in limited set of human

trans-eQTL bands [12].
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In this study, we generate eQTL data from adipose tissue in a

genetically well-characterized and diverse panel of inbred mice.

We focused our analysis efforts on genome-wide characterization

of trans-eQTL bands, testing the hypothesis that these eQTL

patterns reflect known biological pathways. Specifically, we tested

trans-band targets for enrichment in functional gene sets and their

relatedness to candidate regulators found at the associated locus.

These analyses revealed that trans-eQTL bands can be extensively

mined for both previously-uncharacterized gene annotations and

for novel regulators of known biological pathways. We experi-

mentally validated one such predicted relationship, demonstrating

a novel role for cyclin H in the regulation of oxidative

phosphorylation.

Results

We performed eQTL analysis in epididymal adipose tissue. This

study was based on a population of diverse inbred mice, referred to

here as the Mouse Diversity Panel (MDP). Recently, we and others

have performed QTL analyses on individual clinical traits using

the MDP [13–16]. Here, we used a custom mouse whole-genome

Affymetrix GeneChip, GNF1M [17], to obtain the expression

profiles from adipose tissue across 28 strains of the MDP. After

filtering for detectable and differential expression, we identified

6601 differentially expressed genes.

We then performed a genome-wide association analysis for

every differentially expressed gene profile using our HAM

algorithm, which identifies genetic associations between phenotype

and inferred ancestral haplotypes while accounting for the

population structure present in the MDP, as previously described

[13,18,19]. The eQTL results are shown in Figure 1. We first

characterized these eQTL data in the context of cis-eQTL

associations, in which a strong association was observed between

the expression of a gene and the gene’s locally inferred haplotype.

The presence of cis-eQTLs for many gene expression phenotypes

produced a cis-eQTL band, visible as the diagonal line in Figure 1.

Filtering for eQTL associations occurring within a one megabase

window centered around the gene location, we identified 600 cis-

eQTLs in adipose. Consistent with data reported in previous

eQTL studies, the enrichment of associations around the cis-

eQTL diagonal was highly significant (p,0.01) [18].

Because a large number of genes and SNPs were involved in our

eQTL analysis, we first defined criteria to distinguish statistically

significant trans-bands from those formed by chance. Based on

permutation analysis, we conservatively required a trans-eQTL

band to consist of a minimum of 50 trans-band targets for further

study, resulting in the identification of 1659 trans-eQTL bands

(Figure S1).

Although the assembly of individual trans-eQTLs into trans-

eQTL bands was statistically significant, the biological relevance of

these gene sets was unknown. To infer putative biological

functions for these trans-bands, we performed a statistical

enrichment analysis on the trans-band targets based on known

and annotated functional gene sets (FGS). FGS were derived from

Gene Ontology (GO) [20], the KEGG pathways database [21],

and the Ingenuity Pathways Knowledge Base (ING) (Ingenuity

Systems, Redwood City, CA).

For each trans-eQTL band, we performed a functional

enrichment analysis over all FGS based on the hypergeometric

distribution and a variable significance threshold (see Methods).

An enrichment score (Se) was computed to reflect the degree to

which a given FGS was overrepresented within the trans-band

targets, and this process was repeated for all FGS. To account for

the multiple-testing over all FGS, a null distribution of Se values

was generated using 1000 permutations of trans-band association

scores (Figure S2). This null distribution was used to compute

adjusted p-values (adj. P) for FGS enrichment.

Figure 1. The global view of eQTL mapping results adipose
tissue. The x-axis shows the absolute genomic position on the SNP/
QTL axis (chromosomes shown in alternating colors), and y-axis shows
the absolute genomic position of the genes whose expression was
measured. Each data point in the graph represents an association
between the genotype at a specific genomic locus and the expression
of a gene. The strong diagonal pattern is called the ‘‘cis-eQTL band’’ and
represents an association between the expression level of a gene and
the genotype at the gene’s locus. In addition, multiple vertical bands
(‘‘trans-eQTL bands’’) illustrate associations between the expression of
many genes and the genotype at a single genomic locus. For clarity,
only data points with association scores greater than 4.2 are shown
(roughly 5000 data points).
doi:10.1371/journal.pgen.1000070.g001

Author Summary

Genome-wide association (GWA) analyses seek to relate
variation of phenotype to underlying (and presumably
causative) variation in genotype. Recently, many GWA
studies have identified candidate genes underlying disease
phenotypes such as diabetes, heart disease, and cancer
risk. Many groups have also performed GWA using
variation in gene expression levels as the input phenotype.
These expression QTL (eQTL) studies have provided
important clues as to the genetic basis of gene expression
regulation. Here, we perform an eQTL study in mouse
adipose tissue. We then developed a systematic analysis
method to relate these patterns of eQTL associations to
biological pathways. Based on this approach, we identified
putative roles for thousands of candidate upstream
regulators and candidate pathway members in relation
to specific biological pathways. Statistical analysis showed
that these predictions were highly enriched for true
genetic modulators of these pathways. Based on these
predictions, we also experimentally validated a role for one
particular gene, cyclin H, in the regulation of oxidative
phosphorylation. These findings illustrate a new analysis
method for relating eQTL studies to biological pathways
and identify cyclin H as a novel key regulator of cellular
energy metabolism.

Pathway Analysis of eQTL Data
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Among the most significant enrichments observed across all

trans-bands, we identified a trans-eQTL band which was strongly

associated with the category ‘‘Oxidative Phosphorylation’’

(KEGG, mmu00190). The trans-eQTL band was comprised of

68 genes whose expression was associated to a single locus on

chromosome 13 near 81.8 MB. The six most strongly associated

probe sets are shown in Figure 2A. Among these 68 trans-band

targets, 40 genes were annotated in the KEGG/ING pathway

databases, of which 19 genes (48%) had a previously annotated

role in oxidative phosphorylation (Figure 2B and Table 1).

Compared to a background occurrence of this functional

annotation among genes annotated in KEGG/ING (45/

Figure 2. A trans-eQTL band enriched in genes in the ‘‘Oxidative Phosphorylation’’ pathway. (A) The expression patterns of 68 genes
(‘‘trans-band targets’’) were all associated to the haplotype pattern at a region on chromosome 13 near 81.8 Mb (six strongest associations shown).
Strains were assigned to haplotype groups based on local windows of genotype calls [13,18,19]. Each point represents the median-centered
expression value on log10-scale for a given strain in the haplotype group. (B) Trans-band targets were tested for enrichment in FGS from GO, KEGG,
and Ingenuity pathways database (ING). The genes in this trans-eQTL band were found to be strongly associated with the Oxidative Phosphorylation
pathway, with the most significant enrichment (Se = 221.26) found among the top 40 annotated eQTL associations. For comparison, 100 random
permutations of the eQTL association scores showed a maximum enrichment score of 24.13. Visualization of the enrichment analysis is shown as
described in [39]. (C) Expression profiles in the Gene Atlas data set are strongly correlated for the 19 genes (red) which are annotated as being
involved in the Oxidative Phosphorylation pathway (‘‘eQTL/FGS genes’’). In addition, 10 genes (blue, ‘‘inferred’’) were also highly correlated which
were not annotated in this pathway, but whose role in oxidative phosphorylation could be inferred. The remaining 39 genes (gray, ‘‘unknown’’) in the
trans-eQTL band do not share a correlated expression pattern in the Gene Atlas data set. Tissues are sorted from lowest to highest average expression
according to 19 eQTL/FGS genes (red). All expression values have been median-centered on log10-scale. The ‘‘avg. r2’’ label indicates the average
Pearson correlation to the genes in the eQTL/FGS group.
doi:10.1371/journal.pgen.1000070.g002

Pathway Analysis of eQTL Data
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Table 1. Trans-eQTL band enriched in genes related to oxidative phosphorylation.

Probeset ID Sa Annot a Ox-Phos Symbol Description
Median
GA correl.

gnf1m03834_a 3.85 ! Suclg1 succinate-CoA ligase, GDP-forming, alpha subunit 0.78

gnf1m09316_x 3.80 ! Slc25a5 solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator),
member 5

0.48

gnf1m09203_s 3.65 ! ! Atp5o ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit 0.90

gnf1m32047 3.64 Atp1a4 ATPase, Na+/K+ transporting, alpha 4 polypeptide 20.04

gnf1m04592_a 3.60 ! ! Cyc1 cytochrome c-1 0.92

gnf1m10850_a 3.50 ! ! Cox5a cytochrome c oxidase, subunit Va 0.70

gnf1m03550_a 3.49 ! Acadvl acyl-Coenzyme A dehydrogenase, very long chain 0.69

gnf1m05427_a 3.46 ! ! Ndufs7 NADH dehydrogenase (ubiquinone) Fe-S protein 7 0.89

gnf1m00764_a 3.42 ! ! Uqcrc1 ubiquinol-cytochrome c reductase core protein 1 0.88

gnf1m06025_a 3.41 ! ! Ndufv1 NADH dehydrogenase (ubiquinone) flavoprotein 1 0.90

gnf1m04473_a 3.38 ! ! Ndufb5 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5 0.90

gnf1m03473_a 3.33 ! ! Atp5b ATP synthase, H+ transporting mitochondrial F1 complex, beta subunit 0.80

gnf1m04470_a 3.31 ! ! Atp5d ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit 0.86

gnf1m04313_a 3.29 ! ! Sdhb succinate dehydrogenase complex, subunit B, iron sulfur (Ip) 0.91

gnf1m04837_a 3.16 RIKEN cDNA 1110008F13 gene 0.32

gnf1m04489_a 3.09 ! ! Ndufa9 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9 0.87

gnf1m03340_a 3.03 Timm10 translocase of inner mitochondrial membrane 10 homolog (yeast) 0.66

gnf1m03339_a 3.02 Timm8a translocase of inner mitochondrial membrane 8 homolog a (yeast) 0.24

gnf1m29469_a 3.02 Cog7 component of oligomeric golgi complex 7 0.47

gnf1m00856_a 3.01 ! Bckdha branched chain ketoacid dehydrogenase E1, alpha polypeptide 0.47

gnf1m12746_a 2.97 Arsk arylsulfatase K 0.12

gnf1m16262_a 2.93 Coq9 coenzyme Q9 homolog (yeast) 0.59

gnf1m04426_a 2.92 Osbpl5 oxysterol binding protein-like 5 0.08

gnf1m12563_a 2.91 ! Prkacb protein kinase, cAMP dependent, catalytic, beta 0.24

gnf1m29514_a 2.90 Clasp2 CLIP associating protein 2 0.03

gnf1m19563 2.88 Unknown 0.15

gnf1m04655_a 2.86 ! ! Uqcrfs1 ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1 0.91

gnf1m09389_s 2.85 ! Hadhb hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/
enoyl-Coenzyme A hydratase (trifunctional protein), beta subunit

0.55

gnf1m01006_a 2.84 ! Cyp4b1 cytochrome P450, family 4, subfamily b, polypeptide 1 0.21

gnf1m01522_a 2.82 ! Nrp1 neuropilin 1 0.01

gnf1m25672_a 2.81 Bmf Bcl2 modifying factor 0.01

gnf1m00291_s 2.81 ! ! Cox6a1 cytochrome c oxidase, subunit VI a, polypeptide 1 0.63

gnf1m03808_a 2.79 Pex14 peroxisomal biogenesis factor 14 20.10

gnf1m04504_s 2.79 ! ! Cox7b cytochrome c oxidase subunit VIIb 0.85

gnf1m19612_s 2.77 AI585793 expressed sequence AI585793 0.06

gnf1m29966_a 2.76 Zfp664 zinc finger protein 664 20.17

gnf1m32426 2.76 RIKEN cDNA 6230416A05 gene 0.27

gnf1m27063_s 2.74 Msi2h Musashi homolog 2 (Drosophila) 0.07

gnf1m28982_a 2.74 ! Asns asparagine synthetase 0.07

gnf1m04215_a 2.74 Gprc5b G protein-coupled receptor, family C, group 5, member B 0.23

gnf1m00021_a 2.73 ! ! Sdhd succinate dehydrogenase complex, subunit D, integral membrane protein 0.84

gnf1m00829_a 2.73 ! Rhoc ras homolog gene family, member C 0.06

gnf1m28435 2.73 LOC434218, similar to Tripartite motif protein 34 20.03

gnf1m09408_s 2.73 ! Rhoa ras homolog gene family, member A 0.35

gnf1m29220_a 2.71 ! Fh1 fumarate hydratase 1 0.56

gnf1m19366 2.71 RIKEN cDNA A930041I02 gene 0.17

gnf1m22525 2.70 weakly similar to VESICLE ASSOCIATED PROTEIN [Rattus norvegicus] 0.08

gnf1m23009 2.70 RIKEN cDNA 2700089E24 gene 0.57

Pathway Analysis of eQTL Data
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1831 = 2.5%), these trans-eQTL targets were enriched 19-fold in

Oxidative Phosphorylation genes, corresponding to an enrichment

score Se of 221.26 (adj. P,0.001).

Using this oxidative phosphorylation example as a model, we

examined all trans-eQTL bands for enrichment in biological

pathways. As trans-eQTL bands are hypothesized to be driven by

variants of a trans-band regulator, it is expected that at least one

candidate trans-band regulator should exist at each trans-band

locus. In total, we identified 367 trans-eQTL bands which showed

significant enrichment in at least one FGS (adj. P#0.05) and

where at least one gene was found in the associated trans-band

locus (which had a median size of 44.6 kb). For example, we

identified a region on chromosome 4 which was strongly

associated to a trans-eQTL band enriched in genes in the

tricarboxylic acid cycle, and another locus on chromosome 9

associated to genes involved in cell adhesion. In total, these 367

trans-eQTL bands were associated to loci containing 621 unique

candidate genes, represented 1593 enriched pairs of trans-eQTL

bands and FGS, and were enriched in 294 unique FGS (Table S1).

Based on a permutation analysis over the entire set of 1659 trans-

eQTL bands, we estimated that 1593 enriched pairs had a false

discovery rate (FDR) of 10.5%.

Although these identified trans-eQTL bands were statistically

enriched in genes annotated with a specific functional category,

this enrichment was usually based on a small subset of trans-band

target genes (an average of ,10%) which actually shared the

annotation (hereafter referred to as ‘‘eQTL/FGS genes’’).

Whether the other trans-band targets were not annotated with

the enriched category because of spurious association, biological

relationship to a distinct FGS, or incomplete gene annotation was

unknown. To differentiate among these three scenarios (and to

infer missing annotation in the last case), we next examined the

expression of trans-band targets in a second independent gene

expression data set called the Gene Atlas [17]. Whereas eQTL

analysis was based on expression data from a single tissue across

many strains of mice, the Gene Atlas data set measured expression

of a single strain across many diverse anatomic tissues. This data

set was conceptually orthogonal to the eQTL data, and we

hypothesized that the Gene Atlas would be helpful in the

identification of genes whose annotation could be inferred. For

all significant trans-eQTL bands with FGS enrichment, we

computed the median pairwise correlation coefficient in the Gene

Atlas for eQTL/FGS genes (Figure 3A). For comparison, we also

computed the median correlation in a random selection of trans-

band targets. eQTL/FGS genes had a significantly higher pairwise

correlation than random trans-band targets. Based on these data, a

conservative correlation threshold of |R|.0.5 was defined for the

identification of putative pathway gene sets from eQTL analysis

which were also corroborated by correlation in the Gene Atlas

data set. In total, we identified 440 of the original 1593 trans-

eQTL band and FGS pairs which passed this threshold.

We next examined the Gene Atlas expression pattern of

individual trans-band targets in this filtered set of trans-eQTL

bands. To create a set of true positive observations, we performed

a jackknife procedure in which each eQTL/FGS gene was

successively blinded of its functional annotation. The median

Table 1. cont.

Probeset ID Sa Annot a Ox-Phos Symbol Description
Median
GA correl.

gnf1m02147_a 2.69 ! Cpt2 carnitine palmitoyltransferase 2 0.33

gnf1m01276_a 2.69 ! Idh3g isocitrate dehydrogenase 3 (NAD+), gamma 0.81

gnf1m12534_s 2.69 ! Gja7 gap junction membrane channel protein alpha 7 20.09

gnf1m09960_s 2.68 Mtch2 mitochondrial carrier homolog 2 (C. elegans) 0.77

gnf1m03471_a 2.67 ! Ech1 enoyl coenzyme A hydratase 1, peroxisomal 0.63

gnf1m30137_s 2.64 ! ! Atp5k ATP synthase, H+ transporting, mitochondrial F1F0 complex, subunit e 0.89

gnf1m28512_a 2.64 ! Bckdhb branched chain ketoacid dehydrogenase E1, beta polypeptide 0.44

gnf1m02816_s 2.63 ! Spr sepiapterin reductase 0.48

gnf1m05135_a 2.62 Mrpl12 mitochondrial ribosomal protein L12 0.72

gnf1m07261_a 2.60 ! ! Ndufs2 NADH dehydrogenase (ubiquinone) Fe-S protein 2 0.88

gnf1m34680_x 2.60 ENSMUST00000078052 transcript (in rel.37.34e) 0.34

gnf1m07495_a 2.59 ! Dlst dihydrolipoamide S-succinyltransferase (E2 component of
2-oxo-glutarate complex)

0.65

gnf1m11453_a 2.59 Tgoln1 trans-golgi network protein 0.33

gnf1m00838_a 2.59 ! ! Atp5a1 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit,
isoform 1

0.83

gnf1m05094_a 2.58 ! Stx18 syntaxin 18 0.14

gnf1m08892_a 2.57 Chchd3 coiled-coil-helix-coiled-coil-helix domain containing 3 0.71

gnf1m05918_a 2.57 ! Aco2 aconitase 2, mitochondrial 0.85

gnf1m03972_x 2.53 ! ! Atp5j2 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit f,
isoform 2

0.86

gnf1m06647 2.53 cDNA sequence BC031781 20.27

gnf1m10856_a 2.50 RIKEN cDNA 2310015N07 gene 20.15

aAnnotated in either the KEGG of Ingenuity database.
Correlation in the Gene Atlas data set was used to infer annotation for ten of the genes with no previously known role in oxidative phosphorylation (bolded).
doi:10.1371/journal.pgen.1000070.t001
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correlation of the jackknifed gene to the remaining eQTL/FGS

genes was calculated, and this jackknife procedure was repeated

for all eQTL/FGS genes (Figure 3B). For comparison, the median

correlation coefficient (relative to the set of eQTL/FGS genes) was

similarly computed for an identically-sized set of randomly chosen

genes (a surrogate true-negative set). Based on these two

distributions, we defined a threshold of median |R|.0.59 which

corresponded to a FDR of 20%. Applying this threshold to the

filtered set of 440 trans-eQTL bands, we inferred 2860 novel gene

annotations for trans-band targets. The full set of inferred gene

annotations can be found in Table S2. These inferred annotations

are found in 115 unique categories and over 350 unique genes, 46

of which were not previously annotated with any functional

annotation. The stringency of annotation inference could be

tightened by increasing the median correlation threshold, reducing

the total number of inferred annotations while decreasing the false

discovery rate (Figure S3).

Following the procedure outlined above, we then reexamined

the trans-eQTL band example described previously that was

enriched in genes involved in oxidative phosphorylation. Like

many trans-eQTL bands, we found that the 19 genes already

annotated with the ‘‘oxidative phosphorylation’’ keyword shared a

high degree of pairwise correlation in the Gene Atlas data set

(median |R| = 0.86) (Table 1, Figure 2C). Consistent with their

role in metabolic function, these genes were most highly expressed

in heart, brown adipose, and skeletal muscle in the Gene Atlas. Of

the 49 unannotated genes, 10 genes shared this expression patterns

with a median correlation greater than the previously-defined

threshold of 0.59, suggesting that their role in oxidative phosphor-

ylation could be inferred from these data at 20% FDR (Figure 2C).

(In contrast, the remaining 39 trans-band targets did not share

correlated expression in the Gene Atlas data set, and their functional

relationship to oxidative phosphorylation remained unknown.) In

several cases, functional annotation inferred using this procedure was

not surprising and likely represented known biology which had not

yet been captured in systematic annotation efforts. For example, Aco2

(aconitase 2, mitochondrial) and Idh3g (isocitrate dehydrogenase 3

(NAD+), gamma) are both involved in the generation of substrates

for oxidative phosphorylation. However, in other cases these data

provided the first evidence linking the function of genes to oxidative

phosphorylation. For example, Timm10 (translocase of inner

mitochondrial membrane 10 homolog (yeast)), Mtch2 (mitochondrial

carrier homolog 2 (C. elegans)), and Chchd3 (coiled-coil-helix-coiled-

coil-helix domain containing 3) had no previously characterized role

in oxidative phosphorylation. Coregulated expression in an adipose

trans-eQTL band, combined with correlated expression in the Gene

Atlas compendium, strongly implicate a previously unannotated role

for these ten genes in the oxidative phosphorylation pathway.

In addition to the identification of novel pathway members as

described above, this functional enrichment analysis was also used

to identify novel candidate regulators of pathways enriched in

specific trans-eQTL bands. In one example, we examined a trans-

eQTL band which was enriched in genes belonging to the Integrin

Signaling pathway as annotated in the Ingenuity database. The

trans-band locus on chromosome 16 near 38.1 Mb contained four

candidate trans-band regulators. However only one of these genes,

Gsk3b, was also annotated as a member of the Integrin Signaling

pathway, the enriched FGS. Gsk3b is a proline-directed serine-

threonine kinase that was initially identified for its role

phosphorylating and inactivating glycogen synthase [22]. The

role of Gsk3b in integrin signaling is mediated through phosphor-

ylation of its target beta-catenin and subsequent regulation of the

Wnt pathway [23,24], and also through interaction with PKCdelta

as a negative regulator of ERK1/2 (extracellular signal-regulated

kinase) [25]. Moreover, Gsk3b is known to have a frameshift

mutation near the C-terminus, which could explain the differential

integrin signaling activity across the MDP. Taken together, these

data strongly support the hypothesis that GSK3b is the regulator

which is responsible for the differential expression of these trans-

band targets and their putative role in integrin signaling.

Figure 3. Use of the Gene Atlas reference data set to identify
novel pathway members. (A) Median pairwise correlation coeffi-
cients among trans-band targets in the Gene Atlas data set were
calculated for all 1593 enriched pairs of trans-eQTL bands and
functional gene sets (FGS). Trans-band target genes which were
annotated in the enriched category (eQTL/FGS genes) were much
more likely to share a correlated expression pattern in the Gene Atlas
data set than randomly chosen genes from trans-band targets. The 440
trans-eQTL bands in which eQTL/FGS genes had median pairwise
correlation greater than 0.5 were selected for further study. (B) Using
eQTL/FGS genes as a set of true positives, a jackknife procedure was
used to calculate the median expression of each eQTL/FGS gene to the
remaining eQTL/FGS genes (solid line). For comparison, an analogous
calculation was performed for a presumed set of true negatives (a
random set of genes) of the same size as the non-FGS genes in the
trans-eQTL band (dashed line). The ratio between these two
distributions was used to define a median correlation threshold of
R.0.59 at 20% false discovery rate (FDR). When applied to the set of all
unannotated trans-band targets (dotted line), annotation for 350 genes
could be inferred.
doi:10.1371/journal.pgen.1000070.g003
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In examples like these wherein the trans-band locus contained a

candidate gene that shared biological annotation with the enriched

FGS, that gene was considered the likely regulator of the trans-

band targets. Of the 1593 pairs of trans-bands and enriched FGS,

141 were associated to a trans-band locus containing a candidate

regulator matching the FGS category, as in the integrin signaling

example above. Based on 1000 permutations in which each of

these trans-eQTL bands was assigned to random genomic locus,

the number of identified matches between a candidate gene

annotation and the enriched FGS was highly statistically

significant (p,0.005). Although this observation does not suggest

that an upstream regulator will be found in all trans-eQTL band

loci, the strong statistical significance demonstrates that this

analysis enriched for true regulatory relationships which have been

previously described or suggested in the literature.

Although these observations where a candidate regulator’s

annotation matched the enriched FGS lent confidence to the

ability to rediscover known relationships, the majority of enriched

trans-eQTL bands did not have such a high-likelihood candidate

regulator at the trans-band locus. These cases represented

potentially novel relationships between putative regulatory regions

and downstream targets. Therefore, we next examined candidate

regulators for the previously described trans-eQTL band enriched in

genes involved in oxidative phosphorylation. The expression

patterns of these trans-band targets were associated to a locus on

chromosome 13 which contained two candidate regulators, cyclin H

(CCNH) and RAS p21 protein activator (GTPase activating protein)

1 (RASA1). Neither of these candidate genes is itself annotated as

being involved in oxidative phosphorylation. However, recent

studies have implicated MAT1, a binding partner of CCNH, in the

regulation of mitochondrial function and metabolic gene expression

[26]. Selective deletion of MAT1 in the heart resulted in mice with

suppressed expression of genes for energy metabolism and cardiac

metabolic dysfunction. Experiments in embryonic fibroblasts derived

from MAT1 conditional knockouts showed that these abnormalities

were likely due to defects in PGC1-mediated gene expression. PGC-

1a and b are transcriptional co-activators essential for mitochondrial

energy metabolism [27]. Lack of MAT1, and presumably of the

functional trimeric complex it forms with CCNH and CDK7, blocked

PGC-1 function. These results suggested that CCNH could also play a

regulatory role in oxidative phosphorylation.

To test the function of these two candidate regulator genes in

mitochondrial function and oxidative phosphorylation, HIB1B

brown preadipocytes [28] were transfected with three different

siRNAs against CCNH. Mitochondrial density and oxidative

phosphorylation were measured 72 hours later by FACS analysis

of transfected cells stained with mitochondrial-specific dyes. All

three siRNAs against CCNH induced a significant decrease in

mitochondrial density and oxidative phosphorylation, similar to

what is observed with knock-down of PGC-1a (Figure 4A). In

contrast, down-regulation of RASA1 expression showed no effect.

Gene knock-down was confirmed by Taqman-based qRT-PCR

(Figure 4B). MAT1 down-regulation had no effect, in agreement

with findings that this protein is dispensable for basal expression of

PGC-1 target genes [26]. In a complementary approach, CCNH

and RASA1 were ectopically expressed in HIB1B cells, and

mitochondrial density and oxidative phosphorylation were mea-

sured by FACS 72 hours later (Figure 4C). Overexpression of

CCNH, but not RASA1, resulted in significantly increased levels of

mitochondrial density and oxidative phosphorylation, similar to

those observed with overexpression of PGC-1a or MAT1.

Overexpression of CDK7, the third member of the trimeric

complex (CDK7/CCNH/MAT1) did not result in increased

mitochondrial density or oxidative phosphorylation, but knock-

down appeared to affect these phenotypes.

To confirm these observations in a secondary assay, we also

demonstrated decreased expression of six well-characterized OX-

PHOS genes in response to CCNH but not RASA1 (Figure 4D). It is

worth noting that the magnitude of the changes observed with

CCNH knockdown matches those observed with knockdown of PGC-

1a, the best characterized regulator of these mitochondrial

parameters. To exclude the possibility that these observations are

due to general effects on transcription or cell viability, we measured

the effect of CCNH RNAi on four control genes which are unrelated

to OXPHOS but highly expressed in HIB1B cells. The knock-down

of CCNH had no effect on their expression levels (Figure 4E).

We then sequenced through the CCNH gene in 20 of the MPD

strains profiled. We discovered nine SNPs, all of which exactly

matched the haplotype structure inferred from the genome-wide

SNP data (Table S3). One was found in the upstream regulatory

region, six were found in intronic regions, and two were found in

the 39 untranslated region. While none of these SNPs were found

to produce amino acid changes in the protein product, a possible

functional role of these noncoding SNPs could be mediated

through the regulation of CCNH gene expression. This hypothesis

is corroborated by an observed association between expression of

CCNH and haplotype structure at the trans-eQTL band locus

(p = 0.049), albeit at a lower significance than was used to filter the

trans-eQTL band itself.

In summary, these results demonstrate that CCNH, not RASA1,

plays a role in the regulation of oxidative phosphorylation and

validate the use of trans-eQTL functional analysis to identify

candidate regulators of pathways. Moreover, they also highlight

the significance of the trimeric CDK7/CCNH/MAT1 complex in

the regulation of mitochondrial function.

Discussion

This novel regulatory role for cyclin H in the regulation of

oxidative phosphorylation was one of the 1593 trans-eQTL band

enrichments detected in the adipose eQTL analysis. We believe

that the remaining enrichments (Table S1) contain many

promising and testable hypotheses relating candidate genes to

specific biological processes. Moreover, we suggest that this

approach will be generally useful for the analysis other eQTL

data sets which are becoming increasingly available.

In this study, we have chosen to use a diverse inbred mouse

population for eQTL analysis. This population enables utilization

of and contribution to community resources for genotype and

phenotype data. However, several caveats for this approach have

been previously discussed [13,18,19]. Most notably, population

structure in the MDP potentially leads to false positive associations

if left uncorrected. In this study, we utilize a previously described

approach for accounting for population structure that is based on a

weighted bootstrap procedure [18]. Moreover, we suggest that the

statistical significance of the eQTL patterns described above is

robust to any individual false positive eQTLs due to residual

population structure. The analysis reported here relies on patterns

of eQTLs rather than individual eQTL associations, and any false

positives eQTLs resulting from population structure would not be

expected to assemble into trans-eQTL bands. Nevertheless, we

have also performed all analyses after removing the most distantly

related strains (including CAST/EiJ, CZECHII/EiJ, JF1/Ms,

MOLF/EiJ, MSM/Ms, and SPRET/EiJ), thereby reducing the

extent of the background population structure. In these analyses,

we also found the same statistically significant results for all global

permutation analyses reported above.

Pathway Analysis of eQTL Data
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Although this eQTL analysis approach results in associations

between the genotype of an upstream regulator and the expression

of downstream transcriptional targets, it should be emphasized

that many mechanisms are consistent with these results. In the

simplest scenario, the upstream gene could be a direct transcrip-

tional regulator, and all trans-band targets could be direct

transcriptional targets. However, the upstream gene could also

be an enzyme which activates an intermediate transcriptional

regulator, which in turn modulates other trans-band targets. Or

the upstream gene could have only one direct transcriptional

target, which in turn results in a complex transcriptional cascade

that ultimately results in a trans-eQTL band. We suspect that

these and other potential mechanisms are all likely to underlie the

reported trans-eQTL bands. Strategies to characterize the details

of the mechanism are case-specific and not addressed in this study.

Nevertheless, the specific molecular hypotheses presented here are

equally valid regardless of these mechanistic details. In the case of

either direct or indirect regulation, the eQTL analysis strategy

presented here provides fertile starting points for relating

candidate genes underlying eQTLs to specific biological pathways.

Figure 4. Validation of cyclin H as a regulator of oxidative phosphorylation. (A) Three individual siRNAs against two candidate genes (CCNH
and RASA1) were transfected into HIB1B preadipocytes. siRNAs against PGC-1a and functional partners of CCNH were used for comparison.
Mitochondrial density and oxidative phosphorylation (OXPHOS) were evaluated by FACS (see Methods). (B) RNA isolated from cells treated as in (A)
was used to verify knock-down of gene expression using qRT-PCR. (C) Overexpression of CCNH, but not RASA1, resulted in increased mitochondrial
activity. HIB1B cells were transfected with expression vectors for the indicated genes, and mitochondrial parameters were measured 72 hr later. (D)
To confirm the effect on oxidative phosphorylation measured using Mitotracker dyes, expression of six known OXPHOS genes was assayed using qRT-
PCR in response to siRNAs targeting PGC-1a, CCNH, and RASA1. In all cases, knock down of CCNH, but not RASA1, resulted in decreased expression. (E)
To confirm that the effect of CCNH was not due to general effects on transcription or cell viability, the expression of four control genes unrelated to
OXPHOS was also measured by qRT-PCR. In all cases, siRNAs targeting CCNH produced no significant change in expression.
doi:10.1371/journal.pgen.1000070.g004
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High-throughput, genome-wide expression profiling is a powerful

tool for genomic studies for discovering differentially expressed or co-

expressed genes. eQTL analysis extends this methodology by

measuring quantitative variation of gene expression across a well-

defined genetic mapping population. The functional enrichment

analysis introduced here allows association between eQTLs and

biological pathways, enabling the identification of both novel

members and novel regulators of these pathways. This method

may be particularly relevant and complementary to whole-genome

association studies in large clinical populations [29–34]. As more

candidate genes underlying polygenic human diseases are identified,

the next challenge will be to understand how these candidate

regulators alter susceptibility to disease. Our current data suggest

that including genome-wide expression profiling across these

mapping populations will enhance our ability to identify both

diseases susceptibility genes and their underlying pathways.

Materials and Methods

SNP Data
Data from several large-scale genotyping efforts were combined

to generate a high density genotyping data set based on the MDP

population [13,14,35].This data set contained allele calls for

approximately 157 k SNPs across 46 diverse inbred mouse strains.

Approximately 89.7% of these SNPs have a minor allele frequency

greater than 10%. The median inter-SNP distance was 6.02 kb

across all autosomes (mean distance = 15.2 kb). The raw genotyp-

ing data contained 9% missing values.

Because the HAM algorithm is very sensitive to missing data, we

applied a conservative imputation algorithm to infer more than

half of those missing genotype calls based on local linkage

disequilibrium. Missing values in SNP genotyping data were

imputed based on known flanking genotype calls. Imputation was

performed only if the flanking 3–10 allele window matched at least

five other strains and all of these matched known genotype

windows had an unambiguous genotype call at the position of the

missing value. Validation of this imputation method was

performed by sub-selecting SNP positions with no missing data

and then randomly removing 9% of allele calls (approximately the

true missing data rate). In these validation experiments, approx-

imately 99% of imputed values matched the true allele call at a call

rate of approximately 55%.

Sample Preparation
Epididymal adipose tissue was dissected from a panel of 28

diverse inbred strains (n = 3 except as indicated below): A/J, AKR/

J, BALB/cByJ, BTBR T+ tf/J, BUB/BnJ, C3H/HeJ (n = 4),

C57BL/6J, C57L/J, CAST/EiJ (n = 2), CBA/J (n = 2), CZECHII/

EiJ (n = 2), DBA/2J, FVB/NJ, JF1/Ms, MOLF/EiJ, MSM/Ms

(n = 2), NOD/LtJ (n = 1), NZB/BlNJ, NZW/LacJ, PERA/EiJ (n = 1),

PL/J, RIIIS/J, SEA/GnJ, SJL/J, SM/J (n = 2), SPRET/EiJ (n = 2),

SWR/J (n = 2) and WSB/EiJ. All mice were maintained on a 12-h

light/dark cycle at least 1 week before collecting tissues and

individually housed with food and water available ad libitum. At 25

weeks of age, mice were sacrificed under isoflurane anesthesia by

cervical dislocation at ZT 6 (ZT 0 defined as lights on) 2 h after

food deprivation. Epididymal adipose was dissected, snap-frozen

in liquid nitrogen and stored at 280uC for subsequent analysis.

cRNA was prepared as previously described [17], and replicate

samples were pooled by strain.

Expression Profiling
The gene expression profile of adipose tissue sample was obtained

from customized Affymetrix GeneChip, GNF1M, which contained

36,182 probe sets targeting over 27,000 unique mouse genes. Each

expression measurement was summarized by gcRMA (in the

bioconductor package) [36–38] from the quantile-normalized probe

intensities of a probe set. Then the median expression value from

each sample was adjusted to 100 (in real scale) by linear scaling.

Genes were then filtered for detectable and differential expression by

requiring maximum expression to be greater than 200 and the ratio

between maximal expression and minimal expression to be greater

than 3. The remaining differentially expressed genes were kept for

the further eQTL analysis. Primary data has been deposited at

NCBI GEO under the accession number GSE8028.

Genome-Wide eQTL Mapping
The detailed algorithm underlying the Haplotype Association

Mapping (HAM) method has been previously described

[13,18,19]. Briefly, HAM uses ANOVA to calculate the strength

of genetic associations between an input phenotype and the

ancestral haplotype structure (as inferred using a local window of

three adjacent SNP alleles across the genome). A weighted

bootstrap method was introduced to detect association peaks

conditional on the population structure in the MDP [18]. At each

genetic locus, the association score (Sa) was represented as the

negative log10-transformed p-value. HAM analysis was performed

for all differentially expressed genes in adipose across 28 strains.

Expression phenotypes were in log scale. Unless otherwise noted,

all analyses were performed based on a cutoff value, Sa.2.5 (or

P,0.003). The genomic mapping of all genes and SNPs was based

on Mouse Genome NCBI Build 33 (mm5). Candidate genes were

identified as any gene which overlapped the five-SNP window

centered on the inferred haplotype locus described above.

Trans-eQTL Band Size Significance
We generated 1000 permuted eQTL results by randomly

picking associated loci for each gene from a pool of loci with at

least one significant association. For each gene, the number of

associated loci in the permuted results remained the same as in the

true result. For each permutated eQTL result, the distribution of

trans-band sizes was recorded. We observed that a trans-band

formed by chance contains at most 29 genes (Figure S1). In the

interest of setting a simple and conservative threshold, we only

analyzed trans-eQTL bands with 50 or more trans-band targets

(P,0.001). After conservative merging of locally redundant trans-

eQTL bands (but without merging redundant FGS), we identified

1654 trans-eQTL bands.

Biological Knowledge Represented in Gene Sets
The Gene Ontology (GO) database was downloaded from http://

www.geneontology.org/ontology/gene_ontology.obo. The snapshot

of April 03, 2006 was used in this analysis, which contains 21,316

GO terms in three categories for biological process (BP), molecular

function (MF) and cellular component (CC). Three unknown

categories, ‘‘GO:0000004’’, ‘‘GO:0005554’’ and ‘‘GO:0008372’’,

were removed for the analysis. The mapping from Entrez Gene IDs

to GO terms was obtained from NCBI’s gene2go table (April 03,

2006 snapshot from ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.

gz). In addition, we utilized two databases of manually-annotated

metabolic and signaling pathways. The KEGG pathway database

was downloaded from ftp://ftp.genome.jp/pub/kegg/pathways/

mmu/. The snapshot of April 26, 2006 was used, which contains 174

pathways for mouse. Ingenuity pathways database (ING) was

obtained from Ingenuity Inc., which contains 137 pathways for

mouse. All flat-file formatted databases were parsed by individual

python scripts for the use in the functional analysis.

Pathway Analysis of eQTL Data
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Functional Analysis of Trans-Bands
Our functional analysis of trans-bands was adapted from a

previously described method for gene set enrichment [39]. For

each trans-band and FGS pair, the enrichment score Se is

calculated by:

Se~min log10PD ið Þ
� �

i~1,2, . . . ,X

where X is the number of associated genes with Sa.2.5, and

PD ið Þ~
Xmin i,NGð Þ

k~NC

NG

k

� �
NT{NG

i{k

� �

NT

i

� �

where NG is defined as the number of genes assigned to the FGS,

NT is the total number of annotated genes in the eQTL data set,

and NC is defined as the number of genes out of the top i

associations assigned to the FGS. An annotation-specific back-

ground was used for each FGS type, utilizing separate NT values

for BP, MF, CC, and KEGG/ING.

Permutation for the Significance of Enrichment Scores
Our functional enrichment analysis screened thousands of FGS

for each trans-eQTL band. To adjust for multiple testing, we used

a permutation procedure to assess the significance of the

enrichment scores (Se), which were then converted to adjusted p-

values (adj. P):

1. For each trans-band, we generated 1,000 randomized trans-

bands each containing the same number of genes as the true

trans-band, sampled without replacement from the set of

annotated genes in the eQTL data set.

2. The FGS enrichment analysis was applied on each randomized

trans-band, and the most significant Se value across all FGS was

recorded as S
random, ið Þ

e , i = 1 … 1000. This vector serves as the

null distribution of Se.

3. An adj. P was calculated as the percentage of random S
random, ið Þ

e

values that are more significant than the true Se value:

adj:P~

P1000

i~1

I
S

random,ið Þ
e ƒS

trueð Þ
eð Þ

1000

where I
S

random,ið Þ
e ƒS

trueð Þ
eð Þis an indicator function. The threshold

for adj. P was set to 0.05 for the further exploration.

Assessment of Mitochondrial Parameters
HIB1B preadipocytes were cultured in Dulbecco’s modified

Eagle’s medium containing 10% fetal calf serum. Cells were

transfected with indicated siRNAs or cDNA expression vectors

(plus a GFP-expressing plasmid) using DharmaFECT 4 (Dharma-

con) or Fugene 6 (Roche) respectively. 72 hr later, mitochondria

were stained by adding Mitotracker Green (Molecular Probes) to

culture medium and incubating cells for 30 minutes at 37uC.

Similarly, oxidative phosphorylation was measured by incubation

with Mitotracker CMXH2Ros (Molecular Probes), a mitochondrial-

specific stain that needs to be oxidized in an actively respiring cell in

order to fluoresce and thus provides a measure of OXPHOS. Cells

were washed in PBS, trypsinized, and resuspended in Hank’s buffer

containing 0.5% fetal calf serum. Analysis of mitochondrial density

and function was performed in 10,000 cells per sample using flow

cytometry. For siRNA experiments, the entire population was

included since transfection efficiency was close to 100%, as assessed

using a rhodamine-labeled control siRNA. For overexpression

experiments, transfected cells were identified (GFP positive popula-

tion) and mitochondria mass and function evaluated exclusively in

these cells. TaqMan quantitative RT-PCR was used to confirm

siRNA-dependent gene knockdown. Data are representative of three

different experiments performed in triplicate. Error bars indicate

standard deviation. Sequences for siRNAs and qRT-PCR primer/

probe sets are available upon request.

Supporting Information

Figure S1 Histograms of the number of trans-band targets in a

trans-eQTL band formed by chance in fat eQTL data. The

number of trans-band targets in each trans-eQTL band was

computed, and a histogram of trans-eQTL band sizes is shown in

blue. For comparison, the QTL location of each association in the

eQTL matrix was permuted 1000 times, and each gray line

represents the histogram of trans-eQTL band sizes of a permuted

eQTL result.

Found at: doi:10.1371/journal.pgen.1000070.s001 (0.17 MB

DOC)

Figure S2 Enrichment score threshold for multiple testing

correction over all FGS. At each size of trans-eQTL band (x-axis),

1000 random permutations of association scores was generated. For

each permutation, enrichment calculation was performed for all

FGS, and the maximum enrichment score was recorded. Recorded

values were used to define enrichment score thresholds at 0.001, 0.01

and 0.05 (blue, green, and red, respectively) adjusted for multiple

testing over all FGS. These background distributions were used to

calculate adjusted enrichment p-values (adj. P).

Found at: doi:10.1371/journal.pgen.1000070.s002 (0.16 MB

DOC)

Figure S3 Number of inferred annotations and false discovery

rate (FDR) as a function of median correlation threshold. The

median correlation cutoff was used to define a threshold of

inferring missing annotation. Initial settings were chosen corre-

sponding to a 20% FDR at 0.59 cutoff.

Found at: doi:10.1371/journal.pgen.1000070.s003 (0.13 MB

DOC)

Table S1 Detailed information for all 1593 trans-eQTL band /

FGS enrichments.

Found at: doi:10.1371/journal.pgen.1000070.s004 (0.93 MB XLS)

Table S2 Detailed information on all 2860 novel gene

annotations inferred by Gene Atlas correlation.

Found at: doi:10.1371/journal.pgen.1000070.s005 (0.40 MB XLS)

Table S3 SNPs discovered in the CCNH gene across 20 inbred

mouse strains.

Found at: doi:10.1371/journal.pgen.1000070.s006 (0.02 MB XLS)
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