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ABSTRACT

The discovery of quantitative trait loci (QTL) in model organisms has relied heavily on the ability to
perform controlled breeding to generate genotypic and phenotypic diversity. Recently, we and others have
demonstrated the use of an existing set of diverse inbred mice (referred to here as the mouse diversity
panel, MDP) as a QTL mapping population. The use of the MDP population has many advantages relative
to traditional F2 mapping populations, including increased phenotypic diversity, a higher recombination
frequency, and the ability to collect genotype and phenotype data in community databases. However,
these methods are complicated by population structure inherent in the MDP and the lack of an analytical
framework to assess statistical power. To address these issues, we measured gene expression levels in
hypothalamus across the MDP. We then mapped these phenotypes as quantitative traits with our associa-
tion algorithm, resulting in a large set of expression QTL (eQTL). We utilized these eQTL, and specifically
cis-eQTL, to develop a novel nonparametric method for association analysis in structured populations like
the MDP. These eQTL data confirmed that the MDP is a suitable mapping population for QTL discovery
and that eQTL results can serve as a gold standard for relative measures of statistical power.

THE use of modern genetics in model organisms
relies heavily on the use of controlled breeding.

Experimentally derived crosses enable researchers to
generate both genotypic and phenotypic diversity, and
the resulting populations are analyzed to identify ge-
nomic loci that underlie disease and traits. Data from
these experimental designs are analyzed using what are
now classical methods of linkage analysis (Lander and
Botstein 1989; Haley and Knott 1992). In rodent
models over the past 15–20 years, these methods have
been used to identify thousands of quantitative trait loci
(QTL) across a wide range of phenotypes (Flint et al.
2005).

Recently, the increasing availability of high-throughput
genotyping technologies has enabled the use of ge-
nomewide association analyses for QTL discovery and,
in some cases, in alternate mapping populations. For
example, several research groups have investigated the

use of a panel of diverse inbred strains of mice (Bogue

and Grubb 2004) (collectively referred to here as the
mouse diversity panel, MDP) for these QTL mapping
studies (Grupe et al. 2001; Liao et al. 2004; Pletcher

et al. 2004; Cervino et al. 2005). In contrast to mapping
populations derived from controlled crosses, the strains
of the MDP have been derived over the past century of
semistructured breeding and inbreeding (Beck et al.
2000). We recently introduced an algorithm for associ-
ation analysis in the MDP based on the local inferred
haplotype pattern, an approach we termed ‘‘haplotype
association mapping’’ (HAM) (Pletcher et al. 2004;
McClurg et al. 2006).

The MDP is an attractive choice as a mapping popu-
lation for several reasons. Because these mouse strains
were derived over the past century from crossing dif-
ferent mouse populations, the MDP has a greater ge-
netic and phenotypic diversity than is found in a typical
F2 population derived from two parental strains. Since
these mice are inbred, genotype data can be collected in
community databases and applied to all mapping stud-
ies in the MDP. Finally, higher recombination rates and
dense genotype maps result in more precisely defined
QTL regions, facilitating the refinement of QTL to
quantitative trait genes (QTG).

Microarray data from this article have been deposited in the GEO
database at the NCBI under accession no. GSE5961.
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Nevertheless, there are also significant challenges to
performing QTL studies in the MDP population. First,
because we are limited to�30–50 strains in the MDP for
which we have dense genotype data, the question exists
of whether there is sufficient statistical power to detect
QTL (Chesler et al. 2001; Darvasi 2001). Moreover, no
analytical method for analyzing power has yet been
developed. Second, the uncontrolled breeding process
from which the MDP was derived can lead to spurious
associations to background genetic structure if this
population structure is not accounted for. Although
the Collaborative Cross effort (Churchill et al. 2004)
will eventually address both these drawbacks experi-
mentally, this mapping population is not yet available.
In the mean time, QTL mapping in the MDP requires
that these effects be accounted for analytically.

Ideally, computation of power and optimization of
the association algorithm would utilize a set of positive
controls where the QTG underlying a phenotypic trait
has been unequivocally determined. However, in the
case of genetic association analysis, particularly in the
case of complex traits, the availability of these positive
controls is severely limited (Flint et al. 2005). Conse-
quently, estimates of statistical power for QTL mapping
studies typically rely on simulated genotype and pheno-
type data that are based on parametric assumptions.
Although these simulation studies produce useful esti-
mates of statistical power, the parametric assumptions of
normality are usually not satisfied in the typical real-
world study. This limitation is especially clear when
using association mapping in the MDP. Therefore, the
degree to which these parametric estimates reflect the
true statistical power in this population is unclear.

In this article, instead of making parametric assump-
tions on simulated data, we used real experimental data
and made assumptions on the identity of the true posi-
tives. The success of this approach clearly rested on the
ability to identify a set of high-confidence true positives.
Here, we utilized expression QTL (eQTL) data that maps
gene expression measurements across the MDP as phe-
notypes for association analysis. cis-eQTL are commonly
considered to be a highly enriched set of true positives
with a low false-positive rate (Chesler et al. 2006). Al-
though we did not know the identity of all genes that
are truly cis-regulated (and hence could not calculate
absolute measures of power), we used the presence of
cis-eQTL as a relative measure of statistical power. We
applied this approach to the development of an algo-
rithm to account for the inherent population structure
in the MDP. Furthermore, we assessed the ability of
two-factor ANOVA models to improve the algorithm’s
sensitivity.

Finally, since phenotype data measured in the MPD
population are becoming increasingly available (Bogue

and Grubb 2004), we also created a web site where users
can submit phenotypes for analysis using the HAM
algorithm (at http://snpster.gnf.org).

METHODS

Sample preparation: All mice were maintained on a
12-hr light/dark cycle at least 1 week before collecting
hypothalami and individually housed with food and
water available ad libitum. At 25 weeks of age, mice were
sacrificed under light anesthesia at Zeitgerber time (ZT)
6 (ZT 0 defined as lights on) 2 hr after food deprivation.
Animals were killed by cervical dislocation and hypo-
thalami were taken by making two coronal cuts each just
posterior to the optic chiasm and the pituitary stalk. A
pair of sagittal cuts was made 1.5 mm from the midline. A
final horizontal cut was made 1 mm dorsal to the floor of
the hypothalamus. Tissues were snap frozen in liquid
nitrogen and stored at �80� for subsequent analysis.

Gene expression data: Hypothalamus samples were
isolated from male mice of 32 strains (n ¼ 3 except
as noted below): 129S1/SvImJ *, A/J *, AKR/J *, BALB/
cByJ *, BTBRT1tf/J *, BUB/BnJ *, C3H/HeJ, C57BL/6J *,
C57BLKS/J, C57L/J, CAST/EiJ (n¼ 2), CBA/J, CZECHII/
EiJ, DBA/2J *, FVB/NJ, I/LnJ, JF1/Ms, MA/MyJ, MOLF/EiJ,
MSM/Ms (n ¼ 2), NOD/LtJ (n ¼ 1), NZB/BlNJ *, NZW/
LacJ *, PERA/EiJ, PL/J (n ¼ 2), RIIIS/J *, SEA/GnJ, SJL/J,
SM/J *, SPRET/EiJ, SWR/J, and WSB/EiJ (n ¼ 2). RNA
from male replicates was pooled prior to amplification
and subsequently hybridized to a single chip per strain.
Hypothalamus samples from female mice of 12 strains
(indicated with ‘‘*’’ above) were also isolated (n ¼ 1).
Gene expression analysis was performed according to
standard procedures (Su et al. 2004). Briefly, RNA was
isolated from frozen tissue using Trizol followed by
cleanup with the RNeasy kit. RNA was amplified and
labeled using the Affymetrix one-cycle target labeling
kit. Samples were hybridized to GNF1M whole-genome
mouse arrays (Su et al. 2004), and data were processed
using the gcRMA algorithm (Wu et al. 2004). Raw data
were deposited in GEO (http://ncbi.nih.gov/geo) under
series accession no. GSE5961.

In this study, data were filtered to remove probe sets
whose expression was either undetectable (maximum ex-
pression across strains ,200) or invariant across strains
(ratio of maximum expression to minimum expression
across strains ,3). Results were qualitatively the same
when no filtering for differential expression was per-
formed. In addition, the results described in this article
were generated using the default cumulative distribu-
tion function (CDF) file. Although summarization algo-
rithms are designed to be robust to single-probe outliers,
the presence of SNPs in the probe sequence could the-
oretically lead to spurious detection of cis-eQTL. An
analysis performed after removing all probes overlap-
ping a SNP in dbSNP from the CDF file resulted in
qualitatively similar results (supplemental Figure 1 at
http://www.genetics.org/supplemental/).

Haplotype association mapping: The original HAM
method using inferred haplotypes has been previously
described (Pletcher et al. 2004; McClurg et al. 2006).
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Briefly, the HAM approach inferred the haplotype struc-
ture from a set of contiguous genotype calls across the
MDP and used these inferred haplotype groups as the
independent factor in a one-factor ANOVA. For each
phenotype, the F-statistic was calculated to quantify the
between-group variance relative to within-group vari-
ance. The background distribution used to estimate the
significance of the test statistic was either computed
parametrically (the F-distribution) or simulated non-
parametrically using 1E6 bootstraps of the phenotype
vector. The resulting P-value was then transformed us-
ing a �log10 transformation to produce an association
score.

SNP genotype data were collected primarily from
three sources: GNF (Wiltshire et al. 2003), Rosetta/
Merck (Cervino et al. 2005), and the Broad Institute
(http://www.broad.mit.edu/�mjdaly/mousehapmap).
All SNP locations were mapped to NCBIM33. In total,
the genotype data set contained allele calls for�157,000
SNPs across 46 strains in the MDP, resulting in a median
inter-SNP distance of 6.02 kb across autosomes.

Weighted bootstrap: We first calculated the genetic
similarity matrix, as defined previously (McClurg et al.
2006). Briefly, this matrix calculated the pairwise simi-
larity between two strains as the number of genotype
calls in common divided by the total number of geno-
types called in both strains. This matrix was ‘‘weighted’’
by raising all ratios to the exponent of the weight factor.
A weight exponent of zero corresponded to a genetic
similarity matrix of all ones.

As described above in the discussion of HAM, the
significance of the calculated test statistic was estimated
nonparametrically by simulating the null using boot-
strapped phenotype values. A bootstrapped phenotype
vector was created by choosing a replacement pheno-
type value for each strain in the phenotype vector. In
the unweighted case, all strains were equally likely to be
selected as a replacement for a given strain. In our
weighted bootstrap, the probability of choosing the
phenotype of a particular strain A as a replacement for
strain B was proportional to the value in the genetic
similarity matrix. When the weight exponent (described
above) was set to zero, this corresponded to the un-
weighted case (since all values in the matrix are 1). As
the weight exponent was increased, the likelihood also
was increased of choosing a substitution strain in the
null distribution that was genetically (and hence phe-
notypically) similar. The net effect was that the null
distribution was increased for strong associations that
are due to population structure, thereby selectively de-
creasing their significance and association score. This
weighted bootstrap had a lesser negative effect on asso-
ciation scores that are not due to population structure.

Cis-eQTL enrichment calculation: The cis-eQTL en-
richment score was calculated as the ratio of peak den-
sity in the cis-eQTL band relative to the overall peak
density. We first applied a prefilter to remove multiple

adjacent associations that reflect the same strain distri-
bution pattern. First, the top genomewide association
was identified, and all association scores within 500 kb
were removed. The second-highest association score was
similarly identified and isolated, and this process was
iteratively applied for all peaks. After prefiltering, we
had at most one representative for each 1-Mb interval
for each probe set.

Cis-eQTL were defined as associations between a gene
expression vector and a genomic locus within 500 kb of
the gene’s genomic location. At a given threshold, the
percentage of cis-eQTL of all eQTL peaks was calcu-
lated. Since the defined cis-region was �1/2600 of the
overall genome size (�2600 Mb), the cis-eQTL enrich-
ment was the percentage of cis-eQTL 3 2600.

Trans-eQTL band calculation: Trans-eQTL bands
were detected by tabulating the number of genes whose
expression was associated with a single genetic locus.
The significance of each trans-eQTL band was calcu-
lated by comparing it to a background distribution of
trans-eQTL sizes. This background distribution was gen-
erated by creating 1000 random bootstrap samples of
the eQTL matrix.

Two-factor ANOVA model: The two-factor ANOVA
model incorporated two main effects (haplotype and
sex) and an interaction effect. For a genomic locus with
three haplotype groups, the full model F was:

Yijk ¼ m 1 a1Xijk1
|fflfflffl{zfflfflffl}

sex main effect

1 b1Xijk2 1 b2Xijk3
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

haplotype main effect

1 ðabÞ11Xijk1Xijk2 1 ðabÞ12Xijk1Xijk3
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sex�haplotype interaction effect

1 eijk :

The Xijkn were indicator variables with values de-
pendent on sex and haplotype. The error terms were
independent and normally distributed. To test the sig-
nificance of the haplotype effect, the full model was
compared to a reduced haplotype model Rhap in which
the haplotype main effect terms were removed. A gen-
eral linear test statistic was used to compare the variance
explained by the full and reduced model:

F �hap ¼
ðSSEðR hapÞ � SSEðF ÞÞ=ðd:f :Rhap � d:f :F Þ

SSEðF Þ=d:f :F
:

The d.f. terms were the degrees of freedom of the two
models involved. Finally the significance of this statis-
tic was assessed nonparametrically using our weighted
bootstrap procedure to create a background distribu-
tion of 1E6 random statistics. As in the one-factor case,
the resulting P-value was transformed via �log10 to give
an association score.

RESULTS

eQTL data: Hypothalamus tissue was harvested from
32 strains of male mice from the MDP. Total RNA was
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isolated from frozen tissue and hybridized to a custom
Affymetrix whole-genome mouse chip (GNF1M) (Su

et al. 2004), and data were analyzed using the gcRMA
algorithm (Wu et al. 2004). The 36,182 probe sets
represented on the chip were filtered to remove probe
sets whose expression was either undetectable or in-
variant across strains. For each of the remaining 3725
probe sets, the expression pattern across strains was
used as an input phenotype for the HAM algorithm.

Although each HAM analysis is performed com-
pletely independently of any knowledge of the gene’s
position in the genome, a strong association is com-
monly observed between gene expression across the
MDP and the haplotype pattern near the gene locus.
This pattern is referred to as the ‘‘cis-eQTL band’’ and
is a robust pattern observed in many eQTL studies to
date in a range of organisms and tissues (for exam-
ple, Schadt et al. 2003; Brem and Kruglyak 2005;
Bystrykh et al. 2005; Chesler et al. 2005; Cheung et al.
2005; Hubner et al. 2005; Stranger et al. 2005).
Mechanistically, it is commonly hypothesized that cis-
eQTL are explained by a regulatory polymorphism that
alters the ability of a transcription factor or enhancer to
activate transcription, although allelic changes in mRNA
stability and local DNA structure are also consistent with
cis-regulation. Regardless of the specific mechanism un-
derlying the observation, it is commonly assumed that
there is a very low false-positive rate among cis-eQTL
(Chesler et al. 2006). Therefore, in this study we use cis-
eQTL as a large set of surrogate true positives and
conclude that methods that identify more cis-eQTL are
relatively more powerful.

We quantified the strength of the cis-eQTL signal by
calculating an enrichment score, defined generally as
the ratio of the eQTL peak density along the cis-eQTL
band to the background genomewide peak density.
We defined cis-eQTL to be any association within 500 kb
of the gene location (although evidence of cis-eQTL
enrichment extends as far as 5 Mb; see supplemental
Figure 2 at http://www.genetics.org/supplemental/).

Parametric vs. nonparametric methods: In this arti-
cle, we considered three variants of the original HAM
method that differ in their approach to determining
statistical significance. We first applied a parametric HAM
method of measuring genetic association (McClurg

et al. 2006). Briefly, this method used an inferred local
haplotype based on a genotype calls over three contig-
uous SNPs. An F-test statistic was calculated on the basis
of the inferred haplotype grouping. Using the para-
metric version of HAM, significance of the F-test statistic
was calculated from the theoretical background distri-
bution, the F-distribution. This procedure was repeated
for all three-SNP windows in the genotype data.

Using parametric HAM, we examined the top 10,000
associations (nominal P , 1E-12) over all probe sets and
SNP positions and found 19 associations within the
6500-kb window defining the cis-eQTL band (Figure 1A).

Compared to the size of the cis-eQTL band relative to
the size of the mouse genome (1 Mb/�2600 Mb), these
results indicated a cis-eQTL enrichment factor of 4.94.
Although the enrichment was modest, the results were
statistically significant (P , 0.01) on the basis of eQTL
analysis using 100 random permutations of the expres-
sion data. None of these random simulations produced
a cis-eQTL enrichment that exceeded the observed
value, and the maximum enrichment observed in the
background set was 2.08.

We next performed eQTL analysis using a non-
parametric HAM version of our association method
(McClurg et al. 2006). As before, an F-statistic was
calculated on the basis of the inferred haplotype
pattern. Instead of calculating a P-value using a theo-
retical background F-distribution, we simulated the true
background distribution using 1E6 bootstraps of the
input phenotype. The eQTL map using nonparametric
HAM is shown in Figure 1B. Of the top 10,000 associ-
ations (10,384 with ties, nominal P , 1E-6), 80 were
within the cis-eQTL band, corresponding to a cis-eQTL
enrichment factor of 20.03. Again, relative to 100 ran-
domized eQTL simulations, this enrichment score was
highly significant (P , 0.01). To confirm that this trend
is robust, we also examined cis-eQTL enrichment ratios
using several other thresholds (Figure 2).

On the basis of its higher cis-eQTL enrichment factor,
nonparametric HAM was more sensitive to detecting
cis-eQTL associations and therefore was considered to
be a more powerful method. Nevertheless, it was appar-
ent from Figure 1, A and B, that although the cis-eQTL
band is statistically significant, it was not the most prom-
inent signal in these eQTL maps. In both eQTL maps, a
large number of horizontal bands were also clearly
visible. Inspection of these horizontal bands revealed
that this pattern reflects the case where the expression
of one gene across strains was associated with the back-
ground population structure present in the MDP. Unlike
F2 mapping populations in which parental haplotypes
are shared with progeny in equal proportions, the MDP
contains clusters of strains that are more related to each
other than to the other strains in the MDP. Clustering
the global patterns of gene expression in hypothalamus
revealed a grouping of strains that closely matches the
known ancestry of the MDP (Figure 3). In the eQTL con-
text, nonspecific associations to this background pop-
ulation structure manifested themselves as horizontal
bands.

Accounting for population structure: Here, we in-
troduced a weighted HAM method to account for the
population structure inherent in the MDP. To compute
the association between a phenotype and an inferred
haplotype pattern, the F-statistic was computed as usual.
Next, significance was calculated using a weighted
bootstrap procedure to simulate the null distribution.
In nonparametric HAM, 1E6 bootstraps were per-
formed in which a randomly chosen phenotype value
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was sampled from the vector of all phenotype values for
each strain in the analysis. In the case of nonparametric
HAM, the phenotype values from all strains were equally
likely to be sampled as the replacement. Here, weighted
HAM utilized the genomewide genetic similarity to
weight the sampling procedure. In this procedure,
genetically similar strains were more likely to be selected
as a replacement in the background distribution (de-
tails in methods). This adjustment had the overall
effect of increasing the distribution of association scores
in the null distribution, thereby selectively decreasing
the significance of nonspecific associations.

The effect of the genomewide genetic similarity cor-
rection can be adjusted using an empirical weighting
exponent. An analysis with the weight exponent of zero
exactly corresponded to an unweighted nonparametric
HAM analysis (Figure 1B). Figure 4 displays the cis-eQTL
enrichment as a function of the weight exponent. For
all subsequent studies of the weighted HAM method,
we used a weighting exponent equal to three (Figure 1C),
chosen as the lowest weighting exponent that visibly
reduces nonspecific background association. Using the
weighted nonparametric HAM approach, we observed
190 cis-eQTL among the top 10,000 associations (10,030
with ties, nominal P , 0.0004), corresponding to a
cis-eQTL enrichment factor of 49.25. Again, the im-
proved cis-eQTL enrichment was evident over a wide
range of eQTL ranks (Figure 2) and was highly statis-
tically significant relative to randomized eQTL simula-
tions (P , 0.01).

Trans-eQTL band enrichment: The diagonal cis-eQTL
band was the most striking pattern in our hypothalamus
eQTL data (Figure 1C) and was composed of individ-
ual cis-eQTL peaks. However, genetic associations to a
gene’s expression pattern that do not map back to the
genomic position of the gene itself are called ‘‘trans-
eQTL peaks,’’ and we also observed ‘‘trans-eQTL bands’’
that form vertical lines in the eQTL plot. These patterns
resulted from the case where the expression patterns of
multiple genes all associated to the haplotype pattern
at a single genetic locus. These patterns have also been
observed in previous eQTL studies (Bystrykh et al.
2005; Chesler et al. 2005) and are presumed to reflect
the situation where an upstream transcriptional reg-
ulator at the QTL locus affects the expression of mul-
tiple downstream target genes. As another distinctly

Figure 1.—eQTL plots for hypothalamus. eQTL plots were
generated using three haplotype association mapping (HAM)
methods: (A) parametric analysis, (B) nonparametric analy-
sis, and (C) weighted nonparametric analysis. In all plots,
the x-axis represents the genomic SNP axis and the y-axis rep-
resents the genomic probe set axis. Each spot represents an
association between the expression of a gene and the strain
distribution pattern at a SNP location. Alternating colors in-
dicate chromosome boundaries on the x-axis. In each plot,
the top 10,000 eQTL associations are shown.
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nonrandom pattern that was likely to be enriched in
true-positive associations, the occurrence of trans-eQTL
bands was also used as a metric to evaluate relative
statistical power.

To determine the threshold of significance for the
number of genes in a trans-eQTL band, we performed
1000 bootstrap samples of the top 10,000 association
scores while randomizing genomic position. This anal-
ysis indicated that trans-eQTL bands with greater than
nine genes were statistically significant (a ¼ 0.05). The
results comparing the parametric, nonparametric, and
weighted HAM methods are summarized in Table 1.
This analysis showed that the weighted HAM analysis
resulted in the most significant trans-eQTL bands
among the three methods. Moreover, when comparing
the size and significance of the largest trans-eQTL band
from each method, the weighted HAM method also
showed the best performance. Overall, analysis of trans-
eQTL bands corroborated the findings of the cis-eQTL
enrichment.

Two-factor ANOVA model: Since phenotype data for
association analysis are commonly collected for both
males and females separately, we next investigated the
use of a two-factor ANOVA model to simultaneously
model haplotype effects and sex effects. Although the
application of a two-factor ANOVA model requires
simply obtaining and phenotyping both male and
female mice of each strain, the validation of the model
using the concept of cis-eQTL enrichment required
collection of gene expression data across strains for
both sexes. Therefore, we chose a 12-strain subset of the
samples used in the hypothalamus study and performed

TABLE 1

Trans-eQTL bands

No. significant
(a ¼ 0.05)

Largest trans-eQTL band

Size P-value

Parametric 0 7 NS
Nonparametric 1 10 0.03
Weighted 25 28 ,0.001

Figure 2.—Comparison of parametric and nonparametric
HAM methods. The chart displays the cis-eQTL enrichment
as a function of eQTL rank for each of three different HAM
variants.

Figure 3.—Clustering of gene expression data. The cluster-
ing dendrogram displays the relationship of global gene ex-
pression patterns between strains. Coloring of the strain
names reflects clusters derived from clustering of genotype
data. The clear relationship between global gene expres-
sion patterns and genomewide genetic similarity underscores
the need to account for population structure in association
analyses.

Figure 4.—Weight exponent analysis. To optimize the
choice of the weight exponent, we calculated cis-eQTL enrich-
ment using a range of weight powers and eQTL ranks. We
chose a weight exponent of three for all subsequent studies.
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an eQTL analysis. Clearly, with only 12 strains, statistical
power was drastically reduced. Over the top 500 as-
sociations, the cis-eQTL enrichment was reduced from
362 (corresponding to 27 cis-eQTL) in the full 32-strain
analysis to 26 (5 cis-eQTL) in the 12-strain subset. How-
ever, over 1000 randomized simulations, no computed
cis-eQTL enrichment scores exceeded 16 (P , 0.001),
and an enrichment threshold corresponding to a ¼ 0.05
was only �5-fold cis-eQTL enrichment. These simula-
tions indicated that the cis-eQTL band in the 12-strain
subset was still highly statistically significant. (trans-eQTL
analysis did not reveal a statistically significant signal in
the 12-strain analysis.)

We then obtained hypothalamus samples from fe-
male mice for each strain in the 12-strain subset. Total
RNA was isolated and gene expression was measured
using our custom whole-genome Affymetrix array. Over
the top 500 associations, the cis-eQTL enrichment in the
female samples was 41.6 (8 cis-eQTL), comparable to
the score observed in the male samples. Next, we
considered a two-factor ANOVA analysis over sex and
haplotype. This model identified 27 of the top 500
eQTL peaks as cis-eQTL, corresponding to a cis-eQTL
enrichment ratio of 140.4. This comparison between
the three eQTL runs clearly showed that the two-factor
ANOVA model demonstrates much stronger enrich-
ment of the cis-eQTL band (Figure 5). To confirm that
this effect was not simply due to an increase in the
number of animals phenotyped, we also performed a
one-factor ANOVA analysis in which the sex factor was
disregarded. This analysis showed cis-eQTL enrichment
comparable to that in the individual sex-restricted one-
factor analyses.

DISCUSSION

The prospect of using the MDP for genomewide
association mapping holds many potential advantages

relative to more traditional mapping populations. In
particular, the high recombination frequency between
strains, coupled with dense genotyping data sets, leads
to relatively precisely defined QTL with fewer candidate
genes. Furthermore, because these strains are inbred,
community efforts for genotype and phenotype data
significantly decrease the cost of performing an associ-
ation analysis for a phenotype of interest. Nevertheless,
the two important liabilities of using the MDP as a
mapping population are the lack of a framework to
assess statistical power and the background population
structure. Here, we have introduced two approaches
that address these issues.

Estimation of statistical power is an important aspect
of characterizing any QTL mapping strategy. Several
seminal studies of statistical power have been published
that aid the interpretation of QTL results from F2

mapping studies (Soller et al. 1976; Darvasi and
Soller 1997). However, these power estimates typically
employ parametric assumptions on the structure of the
data. In the context of F2 mapping populations, these
statistical assumptions are usually reasonable due to the
defined structure resulting from controlled breeding.
However, the MDP is fundamentally different in a
variety of ways. Most notably, this population is inbred
with no heterozygous alleles, and the pedigree is un-
balanced and largely uncertain.

Since the theoretical framework to compute absolute
statistical power has not yet been worked out for the
MDP, here we used cis-eQTL enrichment as a measure of
relative power. Instead of assumptions on the structure
of the data, this approach made assumptions on the
identity of true positives. Here, we generated the first
eQTL data set in the MDP population. The results were
qualitatively the same as previously observed in mouse
and in other organisms. In the eQTL context, cis-eQTL
can be considered a reliable set of true positives
(Chesler et al. 2006), even after correcting for extensive
multiple testing across genomic loci and gene expres-
sion probes (data not shown). Although it is not known
how many genes are truly cis regulated in the MDP (and
hence we cannot calculate absolute power), it is likely
that an algorithm that enriches for cis-eQTL is relatively
more powerful. Furthermore, although the expression
traits underlying cis-eQTL are likely to result from alleles
with very high genetic effect sizes, the algorithmic
optimizations and conclusions drawn from these studies
will likely extrapolate to analysis of complex traits.

We first applied this power assessment metric to
compare parametric and nonparametric calculation of
association significance. Both methods utilized the
same test statistic, but the former compared the com-
puted test statistic against a theoretical background
distribution whereas the latter simulated the back-
ground distribution using extensive bootstrapping.
The nonparametric HAM method showed a substan-
tially higher cis-eQTL enrichment, which indicated a

Figure 5.—Two-factor association analysis. Strain distribu-
tion pattern and sex were treated as independent factors in
a two-factor HAM analysis. An eQTL analysis was performed
using hypothalamus over 12 strains. For comparison, the
cis-eQTL enrichment ratios are shown for the corresponding
one-factor analyses.
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higher statistical power relative to the parametric HAM.
These results corroborated our previous findings that
used F2-derived QTL for a well-studied complex trait as a
gold standard (McClurg et al. 2006). Moreover, these
results underscored that phenotypic data in the MDP
often do not follow typical parametric assumptions of
normality.

We next applied the cis-eQTL enrichment metric to
assess methods for correcting population structure
effects inherent in the MDP. Previously, we accounted
for these effects by altering the standard F-statistic using
a weight factor reflecting genomewide genetic similar-
ity (McClurg et al. 2006). However, this method had an
unknown effect on the test statistic’s null distribution.
The challenges of association mapping in structured
populations have also been previously addressed in
larger population sizes by identifying unstructured
subpopulations (Pritchard et al. 2000a,b). Others have
recently proposed an alternate method for accounting
for population structure in the context of a mouse
heterogeneous stock population using a ‘‘bootstrap
posterior probability’’ (Valdar et al. 2006). However,
because of the limited population size in the MDP, these
previous efforts cannot be directly adapted to this
mapping population. Recently, another method was
introduced in the context of association mapping in an
Arabidopsis population similar to the MDP (Toomajian

et al. 2006). As these authors alluded to, their algorithm
could be applicable to other structured mapping
populations (including the MDP).

Here, we have introduced an alternate method to
generate a more appropriate null distribution of the
F-statistic in the MDP, thereby reducing the significance
of P-values for nonspecific associations. Since some strains
in the MDP are clearly more related to each other than
to the rest of the strain set, our weighted bootstrap
procedure utilized genomewide genetic similarity when
selecting replacement phenotype values. This modifi-
cation represented a different null hypothesis being
tested. The unweighted nonparametric method sought
to reject the null hypothesis that the association at
a given locus was stronger than a random bootstrap
of strain labels. In contrast, the weighted HAM method
tested the null hypothesis that the association at a
given locus was no stronger than the association to the
global genome structure. To generate this modified
null distribution, strains sharing a high degree of
genetic similarity were more likely to be sampled when
constructing a background phenotype vector. The
use of a weighted nonparametric HAM analysis clearly
further improved the cis-eQTL enrichment metric. Fur-
thermore, this method resulted in a notable decrease in
the horizontal bands in the eQTL map that were
indicative of nonspecific association to background
genetic structure.

Finally, we have also applied the concept of cis-eQTL
enrichment to evaluate the effect of a two-factor ANOVA

model in our HAM method. The incorporation of sex
effects in regression models for eQTL analysis has been
previously described in a recombinant inbred mouse
population (Wang et al. 2006). Here, we showed that
when gene expression data for both males and females
were available, cis-eQTL enrichment was substantially
improved relative to one-factor ANOVA models. We also
performed a similar comparison of two-factor ANOVA
in a second eQTL study across 23 strains and found
similar results (data not shown). Although not all
phenotypes will benefit from treating sex as a second
factor in association analysis, the analysis of thousands
of phenotypes in parallel indicated that there is an
overall benefit. Incorporating the sex effect into the
statistical model clearly improved the cis-eQTL enrich-
ment relative to one-factor models. Nevertheless, the
relative benefit vs. the increased cost of additional
phenotyping will likely vary depending on the specific
experiment and phenotype being studied.

In summary, these results demonstrated that the use
of the HAM algorithm in the MDP has sufficient
statistical power to identify enrichment in both the cis-
eQTL band and trans-eQTL bands. Moreover, we dem-
onstrated that enrichment of these eQTL patterns is a
suitable metric to calculate relative measures of power
for genomewide association mapping. We used this
principle to design and optimize a novel method of
accounting for population structure in the mapping
population and to evaluate a two-factor ANOVA variant
of our HAM method. Finally, we created a web-based
tool for performing HAM analyses using the weighted
bootstrap method at http://snpster.gnf.org.
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