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Abstract

Classification of human tumors according to their primary anatomical
site of origin is fundamental for the optimal treatment of patients with
cancer. Here we describe the use of large-scale RNA profiling and super-
vised machine learning algorithms to construct a first-generation molec-
ular classification scheme for carcinomas of the prostate, breast, lung,
ovary, colorectum, kidney, liver, pancreas, bladder/ureter, and gastroe-
sophagus, which collectively account for �70% of all cancer-related
deaths in the United States. The classification scheme was based on
identifying gene subsets whose expression typifies each cancer class, and
we quantified the extent to which these genes are characteristic of a
specific tumor type by accurately and confidently predicting the anatom-
ical site of tumor origin for 90% of 175 carcinomas, including 9 of 12
metastatic lesions. The predictor gene subsets include those whose expres-
sion is typical of specific types of normal epithelial differentiation, as well
as other genes whose expression is elevated in cancer. This study demon-
strates the feasibility of predicting the tissue origin of a carcinoma in the
context of multiple cancer classes.

Introduction

Effective treatment of cancer patients fundamentally depends on
knowledge of the primary anatomical site of tumor origin. Thus,
classification of human cancers into distinct groups based on their
tissue of origin and histopathological appearance is important for
optimal patient management. The use of biological reagents, particu-
larly antibodies for detecting specific tumor antigens by IHC,3 has
contributed significantly toward improving cancer diagnosis and treat-
ment. It is estimated that �4% of all patients diagnosed with cancer
present with metastatic tumors for which the origin of the primary
tumor has not been determined (1). On occasion, the primary site for
a metastatic tumor is not clearly apparent even after pathological
analysis. Thus, predicting the primary tumor site of origin for some of
these cancers represents an important clinical objective. We have
constructed a first-generation molecular classification scheme for
carcinomas of the prostate, breast, colorectum, lung (adenocarcinoma
and squamous cell carcinoma), liver, gastroesophagus, pancreas,
ovary, kidney, and bladder/ureter, which collectively account for
�70% (�400,000 cases) of all cancer-related deaths in the United
States (2). The gene expression signatures discovered by our classi-
fication approach include novel tumor-related genes whose encoded

proteins may lead to new clinical reagents for successful tumor
diagnosis.

Materials and Methods

Tumor Samples. An initial set of 100 primary carcinomas was used for the
development of our classification scheme (“training set”). This set of tumors
comprised 10 prostate adenocarcinomas, 9 bladder/ureter carcinomas (8 tran-
sitional cell carcinomas and 1 squamous cell carcinoma), 10 infiltrating ductal
breast adenocarcinomas, 10 colorectal adenocarcinomas, 11 gastroesophageal
adenocarcinomas, 11 clear cell carcinomas of the kidney, 6 hepatocellular
carcinomas, 10 serous papillary ovarian adenocarcinomas, 6 pancreatic ade-
nocarcinomas, and 17 lung carcinomas (9 adenocarcinomas and 8 squamous
cell carcinomas). The set of 75 blinded tumor samples (“test set”) included 63
primary tumors and 12 metastatic lesions. The primary tumor samples were 9
lung cancers (4 adenocarcinomas and 5 squamous cell carcinomas), 9 colo-
rectal adenocarcinomas, 13 infiltrating ductal breast adenocarcinomas, 14
prostate adenocarcinomas, 15 papillary serous ovarian carcinomas, 1 hepato-
cellular carcinoma, and 2 gastroesophageal carcinomas. Metastatic tumors
included those arising in the colorectum, ovary, breast, lung, prostate, and
kidney. More detailed descriptions of our ovarian and prostate cancer collec-
tions have been reported (3, 4). A detailed description of the tumors used in
this study is available from our website.4 The University of Virginia Human
Investigation Committee approved the use of the human tissue samples ob-
tained from the University of Virginia. Each specimen was assessed by H&E
frozen section examination, and areas rich in tumor were cut from the frozen
blocks prior to RNA extraction. Care was taken to avoid as much as possible
nonneoplastic epithelium within the tumor samples. Hence, the samples used
in this study consisted predominantly of neoplastic cells.

Microarray Hybridization. RNA extraction and hybridization on oligo-
nucleotide microarrays (U95a GeneChip; Affymetrix Incorporated, Santa
Clara, CA) was performed as described (4), with the exception that the arrays
were hybridized at 50°C for 16–20 h. GeneChip hybridization data were
processed and scaled as described (5, 6). We included only those probe sets
(9198) whose maximum hybridization intensity (AD) in at least one sample
was �200; the other probe sets were excluded (the quantification of gene
transcripts with AD values uniformly �200 are typically unreliable). All AD
values �20, including negative AD values, were raised to a value of 20, and
the data were log transformed. The primary hybridization data are available
from our website.4

Cancer Classification and Cancer Class Prediction. For each of the 9198
genes that passed the minimal expression threshold, a Wilcoxon rank score (7)
was calculated for the group with the highest mean expression versus samples
from all other groups (implemented in Matlab version 6.0). The 100 genes with
the lowest Ps in each class (total, 1100 genes) were ranked based on their
predictive accuracy for discriminating one tumor class versus all others using
a SVM classifier (8). Specifically, genes were ranked based on their LOOCV
accuracy (9). In LOOCV for a given gene, we blinded ourselves to one sample,
trained an SVM using the remaining samples, and used the SVM to predict the
class identity of the blinded sample (either cancer class X, or not cancer class
X). This process was repeated for all samples in the training set, and an overall
prediction accuracy was calculated for each gene. The SVM procedure used
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here5 was implemented in the software package R v1.2.2.4. The voting scheme
used the 10 genes with the highest SVM/LOOCV accuracy from each class
(110 total genes across 11 tumor classes). For each class, a minimum SVM/
LOOCV accuracy threshold was set such that at least 10 genes passed; because
in each class multiple genes have equivalent accuracy, 216 genes were selected
from the 11 classes and were iteratively bootstrapped to obtain an equal
number (i.e., 10) of voting genes per class (10). For classifying an unknown
sample, prediction scores were calculated using one set of 110 genes (calcu-
lated as described below), and final predictions were based on averaged scores
over 50 iterations. Hybridization values for our 110-gene predictor set were
compared to each sample in our training set. An L1 distance (sum of absolute
differences) from the unknown sample to each training sample was calculated.
The “class distance” was defined as the mean distance from the unknown
sample to the members of that class in the training set. The class to which an
unknown sample has the lowest class distance is the predicted identity. A
Dixon test for outliers was used to assign a confidence score to each prediction.
The Dixon metric is calculated by sorting the vector of mean distances, where
Xi � Xi�1, and computing the value D � (X2 � X1)/(Xn � X1) (11). A Dixon
threshold of D � 0.1 was empirically set as a conservative boundary for high
confidence predictions.

Tissue Microarrays and IHC. Tissue microarrays containing 0.6-mm
cores from 265 different zinc formalin-fixed, paraffin-embedded specimens
were constructed using a Tissue Microarrayer (Beecher Instruments, Silver
Spring, MD). Samples consisted of 36 normal adult epithelial tissues and 229
carcinomas, which included most of the tumors whose transcripts were profiled
in the study. Ovarian cancers were profiled as described previously (3), and 16
other independent serous papillary carcinomas of the ovary were included in
the tissue microarrays. For IHC on the tissue microarrays and on a whole-tissue
section of a normal ovary, the avidin-biotin immunoperoxidase method was
performed. After slides had been placed in a citrate buffer and treated with
microwave heat for 20 min, the polyclonal anti-WT antibody (C-19; 1:100
dilution; Santa Cruz Biotechnology, Santa Cruz, CA) was applied for 1 h at
room temperature. Nuclear immunoreactivity was considered to represent true
positivity.

Results and Discussion

We reasoned that a combination of molecular features characteristic
of a neoplasm’s epithelium of origin, as well as consistent molecular
alterations that underlie specific neoplastic phenotypes, might be
sufficient to predict the class of an unknown carcinoma; thus, we
sought to develop a multiclass molecular classification scheme based
on genes whose expression was specific to tumor tissues of each
anatomical site. To obtain sufficient data necessary to develop the
classification method, we hybridized total RNA from a series of 100
carefully prepared primary tumors from 10 diverse tissue origins
(referred to as the training set) on Affymetrix oligonucleotide mi-
croarrays containing probe sets for 12,533 genes. We chose primary
carcinomas from each anatomical site that represented the most com-
monly diagnosed histopathologies (e.g., for kidney, we selected pre-
dominantly clear cell carcinomas, and for ovary we selected papillary
carcinomas of the ovary; see “Materials and Methods” and supple-
mentary information on our website).4

Initial analysis of the data by methods that group similarly ex-
pressed genes, as well as tumors with similar gene expression (i.e.,
unsupervised hierarchical clustering; Ref. 12), showed that we could
readily group cancers of some anatomical sites, such as those of the
prostate and kidney, based solely on the patterns of the most variably
expressed genes. In contrast, we found a high degree of similarity
between cancers of the colorectum, stomach, bladder/ureter, and lung,
making their histological separation difficult on the basis of unsuper-
vised clustering (data not shown; available as supplementary Fig. 1 on
our website).4 We therefore divided the process of multiclass predic-
tion into three components: (a) filtering the large data set of gene

expression (12,533 genes in 100 tumors; �1.25 � 106 data points) to
exclude those genes that do not contribute to tumor distinction; (b)
ranking potentially predictive genes to identify the most accurate
tumor-specific classifiers; and (c) determining an optimal method by
which these genes could be used to “vote” for the likely class of a
blinded tumor sample in the context of multiple tumor classes.

We first sought to “prefilter” the data set to identify genes with
uniformly high expression among carcinomas of a specific anatomical
site and uniformly low expression among carcinomas of all other
anatomical sites or histopathologies (Fig. 1A). This was achieved
using the Wilcoxon rank-sum test (7), which tests the null hypothesis
that gene expression in one tumor class is not different from gene
expression in any other tumor class. The genes in each class that had
significant Ps represented those that disputed the null hypothesis and
defined those that were most different among tumor classes. For
carcinomas of all of the anatomical sites that were examined, we were
able to identify many such genes (Fig. 1B). One hundred of the
Wilcoxon-selected genes from each tumor class were then subjected
to a “prediction accuracy test.” Each of the genes was tested for its
ability to discriminate one tumor class from all other tumor classes,
using a SVM-learning algorithm (Ref. 8; see “Materials and Meth-
ods”), which has been shown to yield good results in gene expression-
based classification problems (Ref. 13; Fig. 1). LOOCV was used to
blind ourselves sequentially to each of the 100 tumor samples; the
SVM was trained on the remaining samples and then used to predict
the class of the blinded specimens (9, 10). This test identified �10
genes per tumor class that could predict the class of a blinded tumor
in at least 91% of cases (such as lung adenocarcinomas and bladder/
ureter carcinomas; Fig. 1C). Typically, the accuracy of the classifier
genes was higher, ranging up to 100% (e.g., prostate carcinoma; Fig.
1C). A voting scheme was developed based on calculating a class
distance, by which we could evaluate how molecularly related an
unknown sample was to tumors of different classes (see “Materials
and Methods”). We also used a confidence score to estimate the
strength of each prediction and experimentally determined a confi-
dence threshold that minimized tumor misclassification. Empirically,
we determined that a small group of 110 genes, representing 10 genes
per tumor class, most accurately predicted the origin of a blinded
tumor sample (see “Materials and Methods”). The complete list of
genes comprising the multiclass predictor is available as supplemen-
tary Table 1 from our website.4

Using these optimized parameters, the performance of the classifi-
cation method was first assessed by predicting the anatomical site of
tumor origin for each of the 100 carcinomas in the training set by
cross-validation (i.e., LOOCV). Confident predictions were made for
94/100 (94%) of the samples, of which 92 (98%) were correct. The
two misclassified cases were a hepatocellular carcinoma and a squa-
mous cell carcinoma of the lung. The 6 cases that did not pass the
confidence threshold included 3 gastroesophageal carcinomas, 1 blad-
der/ureter carcinoma, 1 lung adenocarcinoma and 1 lung squamous
cell carcinoma. Of these cases, 5 were actually correctly predicted, but
with low confidence. One of the gastroesophageal carcinomas was
incorrectly predicted as a lung adenocarcinoma (Table 1; also see
supplementary Table 2 on our website).4 Therefore, in the absence of
the confidence threshold, we correctly predicted an anatomical origin
of 97 of 100 (97%) tumors. Anecdotally, one of the tumor samples
that was originally part of our training set and was labeled as a
hepatocellular carcinoma was strongly predicted as a colon cancer by
cross-validation (data not shown). Histological reevaluation of this
poorly differentiated neoplasm revealed some minor differences be-
tween the frozen tissue section representative of the material that we
had profiled and a paraffin-embedded tissue section from the patient’s
tumor. DNA was isolated from both frozen and paraffin-embedded5 Developed by E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and A. Weingessel.
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tissue sections and genotyped with a series of polymorphic microsat-
ellite markers. The genotypes from the different sources were sub-
stantially different, suggesting that the frozen tissue sample had been
mislabeled. These results underscore the use of an objective molecular
classification scheme because it depends on objective molecular sig-
natures rather than relying on morphological features of the tumor
tissues.

We next applied the classifier to an independent series of 75
carcinoma samples, which were blinded during training of the
classifier and queried only after development of the algorithm.

This group included some of the tumor classes represented in our
training set (specifically, carcinomas of the ovary, prostate, colo-
rectum, lung, breast, and gastroesophagus) as well as 12 metastatic
lesions of diverse primary origin (e.g., prostate, breast, ovary, and
colon). We made confident and accurate predictions for 64 of 75
(85%) carcinomas within the training set above the empirically set
confidence threshold, including 9 of 12 (75%) metastatic carcino-
mas. The 11 cases that were predicted with low confidence, and
therefore not classified, included 4 breast carcinomas, 2 gastroe-
sophageal carcinomas, 1 hepatocellular carcinoma, 1 clear cell

Fig. 1. Selection of tumor-specific genes for
cancer class prediction. A, schematic diagram de-
picting the idealized expression profile of tumor-
specific genes that the method selects as classifiers.
The shape of each profile represents genes that are
highly expressed in each cancer type relative to all
other tumors in the training set. B, 100 genes per
tumor class (total, 1100) with the most significant
scores in a Wilcoxon rank-sum test for equality
were selected as likely candidates for tumor clas-
sifiers. Pr, prostate; Bl, bladder/ureter; Br, breast;
Co, colorectal; Ga, gastroesophagus; Ki, kidney;
Li, liver; Ov, ovary; Pa, pancreas; LA, lung adeno-
carcinomas; LS, lung squamous cell carcinoma. C,
the final refined set of gene classifiers was gener-
ated after the genes in B were ranked by SVM/
LOOCV accuracy. Annotations of the genes from
which 110 “predictor” genes were bootstrapped are
provided on our website.4 For clarity, only 8 of 76
predictor genes for lung adenocarcinomas are de-
picted here. Levels of gene expression (depicted in
each row) across all samples (columns) were me-
dian-centered and normalized by “Cluster” and out-
put in “Treeview” (12). Red, increased gene ex-
pression; blue, decreased expression; black, median
level of gene expression. The color intensity is
proportional to the hybridization intensity of a gene
from its median level across all samples.

Table 1 Distribution of class predictions

Value in each box is the number of samples predicted (from a total of 175) with a given identity by cross-validation in the training set and class prediction in the test set of tumors.
The average Dixon confidence score is shown in parentheses.

True identity of
unknown
sample

Predicted class

PRa BL BR CO GA KI LI OV PA LA LS

PR 26
(0.564)

BL 8
(0.343)

BR 26
(0.267)

CO 23
(0.279)

GA 11 2
(0.187) (0.044)

KI 11
(0.502)

LI 1 5 1
(0.115) (0.523) (0.041)

OV 1 26
(0.045) (0.317)

PA 6
(0.529)

LA 1 13
(0.020) (0.275)

LS 1 13
(0.138) (0.307)

a PR, prostate; BL, bladder/ureter; BR, breast; CO, colorectal; GA, gastroesophagus; KI, kidney; LI, liver; OV, ovary; PA, pancreas; LA, lung adenocarcinoma; LS, lung squamous
cell carcinoma.
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kidney carcinoma, 1 ovarian carcinoma, 1 colorectal carcinoma,
and 1 lung adenocarcinoma. Apart from the fact that three of the
tested and unclassified cases were metastatic (Table 2), there were
no obvious distinguishing features among these carcinomas versus
other carcinomas in the training or test sets. Of the 11 unclassified
cases, 7 were correctly classified, but with low confidence. Thus,
a correct anatomical site of tumor origin was predicted for 71 of 75
(95%) cases in the test set, including 11 of the 12 (92%) metastatic
lesions (Tables 1 and 2, and supplementary Table 2 on our web-
site).4 It is important to note that this initial test set does not fully
test our class prediction model, specifically because of the lack of
sufficient numbers of pancreatic, bladder, and kidney carcinomas.
However, our cross-validation results strongly suggest that we
would be able to correctly predict an anatomical origin for the
majority of carcinomas from these tissue sites.

Most of the genes included in the classifier are expressed in a
tissue-specific manner in the epithelium from which the tumors arose
and are expressed at similar or elevated levels in the resultant carci-
nomas (supplementary Table 1).4 On the basis of gene annotation
alone, we recognized many well-described genes whose expression is
elevated in tumors. These included MUC-2 and A33 in colon cancers,
the latter of which has been used as an immunotherapeutic target in
advanced colorectal carcinomas (14); mammaglobin-1 (MGB-1),
which has been found to be a highly sensitive diagnostic marker for
micrometastatic breast carcinoma (15); and thyroid transcription fac-
tor 1 (TTF-1), which has been proposed as a highly accurate marker
for the differential diagnosis of lung adenocarcinomas (16). We also
identified genes such as uroplakin II (UPII), whose expression in
bladder carcinoma cells is likely maintained at levels similar to that of
normal urothelium. Detection of UPII transcripts in circulating blad-
der cancer cells, however, has been proposed as a sensitive marker of
micrometastasis (17).

We also identified genes whose annotations suggested their expres-
sion in the stromal cells that surround epithelial tumors or in inflam-
matory cells. In some cases we subsequently found evidence that
suggests their overexpression in malignant epithelia [e.g., the fibro-
blast activation protein (FAP-�) in breast cancers (18)]. In adenocar-
cinomas of the lung, we identified genes whose annotations indicated
the presence of B cells, T cells, macrophages, and neutrophils. We
suspect that many of these genes may have been selected because of
the relative paucity of “lung-specific” classifiers, and not because
these samples necessarily contained higher proportions of infiltrating
inflammatory cells relative to the other tumor samples. Conserva-
tively, we suggest that the most reliable classifiers of lung adenocar-
cinomas probably include those genes with predicted accuracies

�95%, i.e., TTF-1. In pancreas cancers we identified genes whose
expression is indicative of acinar cell differentiation. Although we
specifically attempted to avoid normal epithelium in all of the tumor
samples that we profiled, the highly diffuse nature of pancreatic
cancer growth precluded an absolutely complete separation of normal
and neoplastic cells. Highly expressed genes within small amounts of
normal epithelia may conceivably give rise to some of the signals
detected on the arrays. However, it remains a possibility that expres-
sion of some of these “acinar” genes is maintained in pancreatic tumor
cells.

Because of the inherent difficulty in using gene annotation alone to
judge tissue-specific versus tumor-elevated gene expression, we next
sought to objectively “dissect” some of the predictor gene subsets into
tissue-specific genes and tissue-specific/tumor-elevated genes. As an
example, we chose 28 of the genes that were �92% predictive of
serous papillary carcinomas of the ovary and compared the expression
levels of these genes in an expanded set of 24 ovarian tumor samples
against 5 samples of normal ovary, 2 of which were highly enriched
for surface ovarian epithelial cells (3). Differential expression was
determined for genes whose expression was significantly different in
normal and tumor tissues (P � 0.01, unpaired t test) and where the
mean level of expression in tumor tissues was �3 times that in normal
tissues. By these criteria, 18 of 28 genes were significantly overex-
pressed in the tumors (Fig. 2A). Among this group of genes were
protease M/neurosin/kallikrein 6 (hK6), which has been proposed as a
candidate serum marker for ovarian cancer (19), and mesothelin
(CAK1), which is overexpressed in ovarian cancers and is used as a
specific target for a novel therapeutic immunotoxin (20). The 10
tissue-specific genes, which included the WT gene (WT-1), smad6,
and Hox5.1, most likely represent features of normal ovarian physi-
ology.

We have begun to evaluate the “predictability” of some of the
classifier genes in ovarian cancers at the level of the expressed
protein. For example, we used a polyclonal antibody specific to the
WT protein, whose transcript was highly expressed in ovarian cancers
relative to tumors of the other 10 classes, on tissue microarrays
containing 229 carcinomas representing tumors from the 10 anatom-
ical sites analyzed in the study. Immunostaining for WT protein was
present in nuclei from 18 of 20 (90%) serous papillary carcinomas,
whereas nuclear immunoreactivity was absent in the other 209 carci-
nomas (Fig. 2, B–E). As expected from the analysis of classifier gene
transcription in ovarian cancers, the normal serous lining epithelium
of the ovary was also positive for WT protein (Fig. 2C). It should be
noted that expression of WT has been reported in other tissues, but in
the context of the tissues examined in our classification scheme, WT
expression was specific for the ovary.

Transcript profiles of human tumors have previously been used to
predict the membership of an unknown sample into one of two, three,
or at most four distinct tumor classes (21–23). However, the use of
tumor-specific genes to extend these or other discriminant methods to
prediction of tumor origin in the context of multiple (�10) cancer
classes has not been demonstrated and is particularly challenging. We
assessed many methods for multiclass prediction during this study,
based on either weighted correlation methods (21) or on other super-
vised learning methods (e.g., Fisher’s linear discriminant analysis).
Although all of the methods that we used have performed reasonably
well, we found that methods such as SVM, which do not make
assumptions about the distribution of the data (8), performed signif-
icantly better and selected for greater uniformity and specificity
among the class-specific predictors. These findings have recently been
corroborated (24), although the specifics of the SVM methodology are
different.

We found that classification of tumors arising in certain ana-

Table 2 Prediction of tumor origin of metastatic carcinomas

Samples of metastatic carcinomas predicted by the classification method. Metastatic
sites are in parentheses. Nine of 12 carcinomas (bold) were correctly predicted with high
confidence. There were no incorrect predictions with high confidence score. High confi-
dence is defined as above a Dixon score threshold of �0.1.

Sample Prediction
Dixon
score Sample identity

U7 Ovary 0.29 Metastatic serous pap.a ca. of the ovary (omentum)
U8 Ovary 0.34 Metastatic serous pap. ca. of the ovary (omentum)
U11 Ovary 0.20 Metastatic serous pap. ca. of the ovary (omentum)
U12 Colon 0.33 Metastatic colon ca. (ovary)
U16 Breast 0.03 Metastatic breast ca. (liver)
U17 Bladder 0.02 Metastatic lung Ad (brain)
U19 Lung SCC 0.36 Metastatic lung SCC (liver)
U40 Prostate 0.54 Metastatic prostate ca. (lymph node)
U41 Prostate 0.47 Metastatic prostate ca. (lymph node)
U42 Colon 0.31 Metastatic colon ca. (liver)
U43 Colon 0.25 Metastatic colon ca. (liver)
UX14 Kidney 0.07 Metastatic kidney ca. (colon)

a pap., papillary; ca., carcinoma; Ad, adenocarcinoma; SCC, squamous cell carcinoma.
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tomical sites was relatively straightforward because of the large
number of unequivocal predictor genes (e.g., 19 genes with 100%
predictive accuracy for prostate cancer). In contrast, prediction of
other tumors, such as those of the lung, bladder/ureter, or gastroe-
sophagus, was more difficult because of the relative paucity of
highly predictive classifier genes. The difficulty in selecting genes
whose expression is specific to these cancers reflects a high degree
of molecular relatedness, which we had observed in initial analyses
of tumor gene expression.4 For example, blinded gastroesophageal
cancers that could not be predicted by our method were assigned as
lung tumors (albeit with confidence scores close to zero). Analysis
of the entire human transcriptome may uncover tumor-specific
genes for those neoplasms that we have shown to have a high
similarity in expression profiles.

A striking conclusion from the data presented here is that we could
identify subsets of genes with highly restricted, tumor-specific ex-
pression for as many as 11 distinct tumor classes, despite well-
described tumor heterogeneity and obvious molecular similarities
among many divergent tumor classes. The fact that we could success-
fully use these gene subsets to predict the origin of a given tumor in
a majority of cases underscores how strongly characteristic these
genes must be for specific histopathological subtypes of cancer. In
that regard, it is worth noting that, using as few as 11 genes (i.e., 1
gene per tumor class), we could predict the anatomical origin of up to
91 and 83% of the training and blinded tumor samples, respectively
(in the absence of a strict confidence threshold). These results suggest
that we can construct custom DNA microarrays for a molecular
classification of solid tumors, a resource that will augment traditional
site-specific and histopathological classification schemes. The exten-
sion of these and other discriminant methods to identify molecular
correlates with tumor grade, stage, response to therapy, and outcome
will further contribute to the optimal management of patients with
cancer.
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